English

Find the Angles Between the Following Pair of Straight Lines: 3x + Y + 12 = 0 and X + 2y − 1 = 0 - Mathematics

Advertisements
Advertisements

Question

Find the angles between the following pair of straight lines:

3x + y + 12 = 0 and x + 2y − 1 = 0

Answer in Brief

Solution

The equations of the lines are
3x + y + 12 = 0           ... (1)
x + 2y − 1 = 0             ... (2)
Let

\[m_1 \text { and } m_2\] be the slopes of these lines.

\[m_1 = - 3, m_2 = - \frac{1}{2}\]

Let\[\theta\] be the angle between the lines.
Then,

\[\tan\theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right|\]

\[ = \left| \frac{- 3 + \frac{1}{2}}{1 + \frac{3}{2}} \right|\]

\[ = 1\]

\[ \Rightarrow \theta = \frac{\pi}{4}\text { or }45^\circ\]

Hence, the acute angle between the lines is \[ 45^\circ\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 23: The straight lines - Exercise 23.13 [Page 99]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 23 The straight lines
Exercise 23.13 | Q 1.1 | Page 99

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

The base of an equilateral triangle with side 2a lies along they y-axis such that the mid point of the base is at the origin. Find vertices of the triangle.


Without using the Pythagoras theorem, show that the points (4, 4), (3, 5) and (–1, –1) are the vertices of a right angled triangle.


If three point (h, 0), (a, b) and (0, k) lie on a line, show that `q/h + b/k = 1`


Consider the given population and year graph. Find the slope of the line AB and using it, find what will be the population in the year 2010?


Find the values of k for which the line (k–3) x – (4 – k2) y + k2 –7k + 6 = 0 is 

  1. Parallel to the x-axis,
  2. Parallel to the y-axis,
  3. Passing through the origin.

Find the slope of the lines which make the following angle with the positive direction of x-axis:

\[- \frac{\pi}{4}\]


Find the slope of the lines which make the following angle with the positive direction of x-axis:

\[\frac{2\pi}{3}\]


Find the slope of the lines which make the following angle with the positive direction of x-axis: \[\frac{\pi}{3}\]


Find the slope of a line passing through the following point:

\[(a t_1^2 , 2 a t_1 ) \text { and } (a t_2^2 , 2 a t_2 )\]


Find the slope of a line (i) which bisects the first quadrant angle (ii) which makes an angle of 30° with the positive direction of y-axis measured anticlockwise.


Show that the line joining (2, −3) and (−5, 1) is parallel to the line joining (7, −1) and (0, 3).


Show that the line joining (2, −5) and (−2, 5) is perpendicular to the line joining (6, 3) and (1, 1).


Without using Pythagoras theorem, show that the points A (0, 4), B (1, 2) and C (3, 3) are the vertices of a right angled triangle.


Prove that the points (−4, −1), (−2, −4), (4, 0) and (2, 3) are the vertices of a rectangle.


Without using the distance formula, show that points (−2, −1), (4, 0), (3, 3) and (−3, 2) are the vertices of a parallelogram.


Find the equation of a straight line  with slope − 1/3 and y-intercept − 4.


Find the equation of a straight line with slope −2 and intersecting the x-axis at a distance of 3 units to the left of origin.


Find the equations of the straight lines which cut off an intercept 5 from the y-axis and are equally inclined to the axes.


Find the equations of the altitudes of a ∆ ABC whose vertices are A (1, 4), B (−3, 2) and C (−5, −3).


Find the image of the point (3, 8) with respect to the line x + 3y = 7 assuming the line to be a plane mirror.


Find the acute angle between the lines 2x − y + 3 = 0 and x + y + 2 = 0.


If θ is the angle which the straight line joining the points (x1, y1) and (x2, y2) subtends at the origin, prove that  \[\tan \theta = \frac{x_2 y_1 - x_1 y_2}{x_1 x_2 + y_1 y_2}\text { and } \cos \theta = \frac{x_1 x_2 + y_1 y_2}{\sqrt{{x_1}^2 + {y_1}^2}\sqrt{{x_2}^2 + {y_2}^2}}\].


Find the tangent of the angle between the lines which have intercepts 3, 4 and 1, 8 on the axes respectively.


Write the coordinates of the image of the point (3, 8) in the line x + 3y − 7 = 0.


The reflection of the point (4, −13) about the line 5x + y + 6 = 0 is  


If the slopes of the lines given by the equation ax2 + 2hxy + by2 = 0 are in the ratio 5 : 3, then the ratio h2 : ab = ______.


Find the equation of the line passing through the point (5, 2) and perpendicular to the line joining the points (2, 3) and (3, – 1).


If the equation of the base of an equilateral triangle is x + y = 2 and the vertex is (2, – 1), then find the length of the side of the triangle.


A variable line passes through a fixed point P. The algebraic sum of the perpendiculars drawn from the points (2, 0), (0, 2) and (1, 1) on the line is zero. Find the coordinates of the point P.


P1, P2 are points on either of the two lines `- sqrt(3) |x|` = 2 at a distance of 5 units from their point of intersection. Find the coordinates of the foot of perpendiculars drawn from P1, P2 on the bisector of the angle between the given lines.


If p is the length of perpendicular from the origin on the line `x/a + y/b` = 1 and a2, p2, b2 are in A.P, then show that a4 + b4 = 0.


The coordinates of the foot of perpendiculars from the point (2, 3) on the line y = 3x + 4 is given by ______.


Equation of the line passing through (1, 2) and parallel to the line y = 3x – 1 is ______.


Equations of the lines through the point (3, 2) and making an angle of 45° with the line x – 2y = 3 are ______.


The vertex of an equilateral triangle is (2, 3) and the equation of the opposite side is x + y = 2. Then the other two sides are y – 3 = `(2 +- sqrt(3)) (x - 2)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×