English

Find the values of k for which the line (k–3) x – (4 – k2) y + k2 –7k + 6 = 0 is Parallel to the x-axis, Parallel to the y-axis, Passing through the origin. - Mathematics

Advertisements
Advertisements

Question

Find the values of k for which the line (k–3) x – (4 – k2) y + k2 –7k + 6 = 0 is 

  1. Parallel to the x-axis,
  2. Parallel to the y-axis,
  3. Passing through the origin.
Sum

Solution

The given equation of line is

(k – 3) x – (4 – k2) y + k2 – 7k + 6 = 0    …(1)

(a) If the given line is parallel to the x-axis, then

Slope of the given line = Slope of the x-axis

The given line can be written as

(4 – k2) y = (k – 3) x + k2 – 7k + 6 = 0

`y = ((k - 3))/((4 - k^2))x + (k^2 - 7k + 6)/((4 - k^2))`, which of the form y = mx + c

∴ Slope of the given line = `(k - 3)/(4 - k^2)`

Slope of the x-axis = 0

∴ `((k - 3))/((4 - k^2)) = 0`

= k - 3 = 0

= k = 3

Thus, if the given line is parallel to the x-axis, then the value of k is 3.

(b) If the given line is parallel to the y-axis, it is vertical. Hence, its slope will be undefined.

The slope of the given line is `(k - 3)/(4 - k^2)`.

Now, `(k - 3)/(4 - k^2)` is undefined at k2 = 4

k2 = 4

⇒ k = ±2

Thus, if the given line is parallel to the y-axis, then the value of k is ±2.

(c) If the given line is passing through the origin, then point (0, 0) satisfies the given equation of line.

(k - 3) (0) - (4 - k2)(0) + k2 - 7k + 6 = 0

k2 - 7k + 6 = 0

k2 - 6k + k + 6 = 0

(k - 6) (k - 1) = 0

k = 1 or 6

Thus, if the given line is passing through the origin, then the value of k is either 1 or 6.

shaalaa.com
  Is there an error in this question or solution?
Chapter 10: Straight Lines - Miscellaneous Exercise [Page 233]

APPEARS IN

NCERT Mathematics [English] Class 11
Chapter 10 Straight Lines
Miscellaneous Exercise | Q 1 | Page 233

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Without using distance formula, show that points (–2, –1), (4, 0), (3, 3) and (–3, 2) are vertices of a parallelogram.


The slope of a line is double of the slope of another line. If tangent of the angle between them is `1/3`, find the slopes of the lines.


Find the equation of the lines through the point (3, 2) which make an angle of 45° with the line x –2y = 3.


Find the slope of the lines which make the following angle with the positive direction of x-axis: 

\[\frac{3\pi}{4}\]


Find the slope of a line passing through the following point:

(3, −5), and (1, 2)


State whether the two lines in each of the following is parallel, perpendicular or neither.

Through (3, 15) and (16, 6); through (−5, 3) and (8, 2).


Using the method of slope, show that the following points are collinear A (4, 8), B (5, 12), C (9, 28).


Show that the line joining (2, −3) and (−5, 1) is parallel to the line joining (7, −1) and (0, 3).


Consider the following population and year graph:
Find the slope of the line AB and using it, find what will be the population in the year 2010.


Find the value of x for which the points (x, −1), (2, 1) and (4, 5) are collinear.


Find the angle between X-axis and the line joining the points (3, −1) and (4, −2).


Find the equations of the bisectors of the angles between the coordinate axes.


Find the equation of the strainght line intersecting y-axis at a distance of 2 units above the origin and making an angle of 30° with the positive direction of the x-axis.


The line through (h, 3) and (4, 1) intersects the line 7x − 9y − 19 = 0 at right angle. Find the value of h.


Find the image of the point (3, 8) with respect to the line x + 3y = 7 assuming the line to be a plane mirror.


If θ is the angle which the straight line joining the points (x1, y1) and (x2, y2) subtends at the origin, prove that  \[\tan \theta = \frac{x_2 y_1 - x_1 y_2}{x_1 x_2 + y_1 y_2}\text { and } \cos \theta = \frac{x_1 x_2 + y_1 y_2}{\sqrt{{x_1}^2 + {y_1}^2}\sqrt{{x_2}^2 + {y_2}^2}}\].


Find the tangent of the angle between the lines which have intercepts 3, 4 and 1, 8 on the axes respectively.


Show that the line a2x + ay + 1 = 0 is perpendicular to the line x − ay = 1 for all non-zero real values of a.


Show that the tangent of an angle between the lines \[\frac{x}{a} + \frac{y}{b} = 1 \text { and } \frac{x}{a} - \frac{y}{b} = 1\text {  is } \frac{2ab}{a^2 - b^2}\].


The acute angle between the medians drawn from the acute angles of a right angled isosceles triangle is 


The equation of the line with slope −3/2 and which is concurrent with the lines 4x + 3y − 7 = 0 and 8x + 5y − 1 = 0 is


Find the equation of the straight line passing through (1, 2) and perpendicular to the line x + y + 7 = 0.


If the line joining two points A(2, 0) and B(3, 1) is rotated about A in anticlock wise direction through an angle of 15°. Find the equation of the line in new position.


The equation of the line passing through (1, 2) and perpendicular to x + y + 7 = 0 is ______.


The coordinates of the foot of the perpendicular from the point (2, 3) on the line x + y – 11 = 0 are ______.


The intercept cut off by a line from y-axis is twice than that from x-axis, and the line passes through the point (1, 2). The equation of the line is ______.


Find the angle between the lines y = `(2 - sqrt(3)) (x + 5)` and y = `(2 + sqrt(3))(x - 7)`


Find the equation of one of the sides of an isosceles right angled triangle whose hypotenuse is given by 3x + 4y = 4 and the opposite vertex of the hypotenuse is (2, 2).


P1, P2 are points on either of the two lines `- sqrt(3) |x|` = 2 at a distance of 5 units from their point of intersection. Find the coordinates of the foot of perpendiculars drawn from P1, P2 on the bisector of the angle between the given lines.


The equation of the straight line passing through the point (3, 2) and perpendicular to the line y = x is ______.


Equations of the lines through the point (3, 2) and making an angle of 45° with the line x – 2y = 3 are ______.


The line `x/a + y/b` = 1 moves in such a way that `1/a^2 + 1/b^2 = 1/c^2`, where c is a constant. The locus of the foot of the perpendicular from the origin on the given line is x2 + y2 = c2.


The line which passes through the origin and intersect the two lines `(x - 1)/2 = (y + 3)/4 = (z - 5)/3, (x - 4)/2 = (y + 3)/3 = (z - 14)/4`, is ______.


The three straight lines ax + by = c, bx + cy = a and cx + ay = b are collinear, if ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×