Advertisements
Advertisements
Question
Find the equation of one of the sides of an isosceles right angled triangle whose hypotenuse is given by 3x + 4y = 4 and the opposite vertex of the hypotenuse is (2, 2).
Solution
Given that equation of the hypotenuse is 3x + 4y = 4 and opposite vertex is (2, 2)
Slope BC = `(-3)/4`
Let slope of AC be m
∴ tan 45° = `|(m + 3/4)/(1 + ((-3)/4))|`
⇒ 1 = `|(4m + 3)/(4 - 3m)|`
⇒ `(4m + 3)/(4 - 3m)` = ± 1
Taking (+) sign,
`(4m + 3)/(4 - 3m)` = 1
⇒ 4m + 3 = 4 – 3m
⇒ 7m = 1
⇒ m = `1/7`
Taking (–) sign,
`(4m + 3)/(4 - 3m)` =– 1
⇒ 4m + 3 = – 4 + 3m
⇒ 4m – 3m = – 3 – 4
⇒ m = – 7
∴ Equation of AC with slope `(1/7)` is
y – 2 = `1/7(x - 2)`
⇒ 7y – 14 = x – 2
⇒ x – 7y + 12 = 0
Equation of AC with slope (– 7) is
y – 2 = – 7(x – 2)
⇒ y – 2 = – 7x + 14
⇒ 7x + y – 16 = 0
Hence, the required equation are x – 7y + 12 = 0 and 7x + y – 16 = 0.
APPEARS IN
RELATED QUESTIONS
Find the slope of a line, which passes through the origin, and the mid-point of the line segment joining the points P (0, –4) and B (8, 0).
Find the slope of the line, which makes an angle of 30° with the positive direction of y-axis measured anticlockwise.
Find the value of x for which the points (x, –1), (2, 1) and (4, 5) are collinear.
Find the angle between the x-axis and the line joining the points (3, –1) and (4, –2).
A line passes through (x1, y1) and (h, k). If slope of the line is m, show that k – y1 = m (h – x1).
If three point (h, 0), (a, b) and (0, k) lie on a line, show that `q/h + b/k = 1`
State whether the two lines in each of the following are parallel, perpendicular or neither.
Through (5, 6) and (2, 3); through (9, −2) and (6, −5)
Find the equations of the bisectors of the angles between the coordinate axes.
Find the equation of the perpendicular to the line segment joining (4, 3) and (−1, 1) if it cuts off an intercept −3 from y-axis.
Find the coordinates of the orthocentre of the triangle whose vertices are (−1, 3), (2, −1) and (0, 0).
Find the equation of the right bisector of the line segment joining the points (3, 4) and (−1, 2).
Find the angles between the following pair of straight lines:
x − 4y = 3 and 6x − y = 11
Find the angles between the following pair of straight lines:
(m2 − mn) y = (mn + n2) x + n3 and (mn + m2) y = (mn − n2) x + m3.
Prove that the points (2, −1), (0, 2), (2, 3) and (4, 0) are the coordinates of the vertices of a parallelogram and find the angle between its diagonals.
Find the tangent of the angle between the lines which have intercepts 3, 4 and 1, 8 on the axes respectively.
The angle between the lines 2x − y + 3 = 0 and x + 2y + 3 = 0 is
The reflection of the point (4, −13) about the line 5x + y + 6 = 0 is
The equation of a line passing through the point (7, - 4) and perpendicular to the line passing through the points (2, 3) and (1 , - 2 ) is ______.
Find the equation of the line passing through the point (5, 2) and perpendicular to the line joining the points (2, 3) and (3, – 1).
Find the equation of a straight line on which length of perpendicular from the origin is four units and the line makes an angle of 120° with the positive direction of x-axis.
A variable line passes through a fixed point P. The algebraic sum of the perpendiculars drawn from the points (2, 0), (0, 2) and (1, 1) on the line is zero. Find the coordinates of the point P.
P1, P2 are points on either of the two lines `- sqrt(3) |x|` = 2 at a distance of 5 units from their point of intersection. Find the coordinates of the foot of perpendiculars drawn from P1, P2 on the bisector of the angle between the given lines.
The equation of the straight line passing through the point (3, 2) and perpendicular to the line y = x is ______.
The coordinates of the foot of perpendiculars from the point (2, 3) on the line y = 3x + 4 is given by ______.
The point (4, 1) undergoes the following two successive transformations:
(i) Reflection about the line y = x
(ii) Translation through a distance 2 units along the positive x-axis Then the final coordinates of the point are ______.
The line `x/a + y/b` = 1 moves in such a way that `1/a^2 + 1/b^2 = 1/c^2`, where c is a constant. The locus of the foot of the perpendicular from the origin on the given line is x2 + y2 = c2.
Column C1 | Column C2 |
(a) The coordinates of the points P and Q on the line x + 5y = 13 which are at a distance of 2 units from the line 12x – 5y + 26 = 0 are |
(i) (3, 1), (–7, 11) |
(b) The coordinates of the point on the line x + y = 4, which are at a unit distance from the line 4x + 3y – 10 = 0 are |
(ii) `(- 1/3, 11/3), (4/3, 7/3)` |
(c) The coordinates of the point on the line joining A (–2, 5) and B (3, 1) such that AP = PQ = QB are |
(iii) `(1, 12/5), (-3, 16/5)` |