English

State Whether the Two Lines in Each of the Following is Parallel, Perpendicular Or Neither. Through (5, 6) and (2, 3); Through (9, −2) and (6, −5) - Mathematics

Advertisements
Advertisements

Question

State whether the two lines in each of the following are parallel, perpendicular or neither.

Through (5, 6) and (2, 3); through (9, −2) and (6, −5)

Answer in Brief

Solution

Through (5, 6) and (2, 3); through (9, −2) and (6, −5)

Let m1 be the slope of the line joining (5, 6) and (2, 3) and m2 be the slope of the line joining (9, −2) and (6, −5).

\[\therefore m_1 = \frac{y_2 - y_1}{x_2 - x_1} = \frac{3 - 6}{2 - 5} = \frac{- 3}{- 3} = 1 \text { and } m_2 = \frac{y_2 - y_1}{x_2 - x_1} = \frac{- 5 + 2}{6 - 9} = \frac{- 3}{- 3} = 1\]

\[\text { Since }, m_1 = m_2\]

Therefore, the given lines are parallel.

shaalaa.com
  Is there an error in this question or solution?
Chapter 23: The straight lines - Exercise 23.1 [Page 13]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 23 The straight lines
Exercise 23.1 | Q 3.1 | Page 13

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Draw a quadrilateral in the Cartesian plane, whose vertices are (–4, 5), (0, 7), (5, –5) and (–4, –2). Also, find its area.


Find the values of k for which the line (k–3) x – (4 – k2) y + k2 –7k + 6 = 0 is 

  1. Parallel to the x-axis,
  2. Parallel to the y-axis,
  3. Passing through the origin.

Find the value of p so that the three lines 3x + y – 2 = 0, px + 2y – 3 = 0 and 2x – y – 3 = 0 may intersect at one point.


Find the slope of a line passing through the following point:

\[(a t_1^2 , 2 a t_1 ) \text { and } (a t_2^2 , 2 a t_2 )\]


State whether the two lines in each of the following is parallel, perpendicular or neither.

Through (6, 3) and (1, 1); through (−2, 5) and (2, −5)


State whether the two lines in each of the following is parallel, perpendicular or neither.

Through (3, 15) and (16, 6); through (−5, 3) and (8, 2).


Show that the line joining (2, −5) and (−2, 5) is perpendicular to the line joining (6, 3) and (1, 1).


Without using Pythagoras theorem, show that the points A (0, 4), B (1, 2) and C (3, 3) are the vertices of a right angled triangle.


Find the value of x for which the points (x, −1), (2, 1) and (4, 5) are collinear.


Find the equation of a straight line with slope 2 and y-intercept 3 .


Find the equation of a straight line with slope −2 and intersecting the x-axis at a distance of 3 units to the left of origin.


Find the coordinates of the orthocentre of the triangle whose vertices are (−1, 3), (2, −1) and (0, 0).


Find the equation of the right bisector of the line segment joining the points (3, 4) and (−1, 2).


Find the angles between the following pair of straight lines:

3x + y + 12 = 0 and x + 2y − 1 = 0


If θ is the angle which the straight line joining the points (x1, y1) and (x2, y2) subtends at the origin, prove that  \[\tan \theta = \frac{x_2 y_1 - x_1 y_2}{x_1 x_2 + y_1 y_2}\text { and } \cos \theta = \frac{x_1 x_2 + y_1 y_2}{\sqrt{{x_1}^2 + {y_1}^2}\sqrt{{x_2}^2 + {y_2}^2}}\].


Prove that the straight lines (a + b) x + (a − b ) y = 2ab, (a − b) x + (a + b) y = 2ab and x + y = 0 form an isosceles triangle whose vertical angle is 2 tan−1 \[\left( \frac{a}{b} \right)\].


Show that the line a2x + ay + 1 = 0 is perpendicular to the line x − ay = 1 for all non-zero real values of a.


Write the coordinates of the image of the point (3, 8) in the line x + 3y − 7 = 0.


The equation of a line passing through the point (7, - 4) and perpendicular to the line passing through the points (2, 3) and (1 , - 2 ) is ______.


A ray of light coming from the point (1, 2) is reflected at a point A on the x-axis and then passes through the point (5, 3). Find the coordinates of the point A.


If one diagonal of a square is along the line 8x – 15y = 0 and one of its vertex is at (1, 2), then find the equation of sides of the square passing through this vertex.


Find the equation of the line passing through the point (5, 2) and perpendicular to the line joining the points (2, 3) and (3, – 1).


Show that the tangent of an angle between the lines `x/a + y/b` = 1 and `x/a - y/b` = 1 is `(2ab)/(a^2 - b^2)`


Find the equation of one of the sides of an isosceles right angled triangle whose hypotenuse is given by 3x + 4y = 4 and the opposite vertex of the hypotenuse is (2, 2).


A variable line passes through a fixed point P. The algebraic sum of the perpendiculars drawn from the points (2, 0), (0, 2) and (1, 1) on the line is zero. Find the coordinates of the point P.


If p is the length of perpendicular from the origin on the line `x/a + y/b` = 1 and a2, p2, b2 are in A.P, then show that a4 + b4 = 0.


The equation of the straight line passing through the point (3, 2) and perpendicular to the line y = x is ______.


The tangent of angle between the lines whose intercepts on the axes are a, – b and b, – a, respectively, is ______.


Equations of diagonals of the square formed by the lines x = 0, y = 0, x = 1 and y = 1 are ______.


One vertex of the equilateral triangle with centroid at the origin and one side as x + y – 2 = 0 is ______.


The points (3, 4) and (2, – 6) are situated on the ______ of the line 3x – 4y – 8 = 0.


The vertex of an equilateral triangle is (2, 3) and the equation of the opposite side is x + y = 2. Then the other two sides are y – 3 = `(2 +- sqrt(3)) (x - 2)`.


The line `x/a + y/b` = 1 moves in such a way that `1/a^2 + 1/b^2 = 1/c^2`, where c is a constant. The locus of the foot of the perpendicular from the origin on the given line is x2 + y2 = c2.


A ray of light coming from the point (1, 2) is reflected at a point A on the x-axis and then passes through the point (5, 3). The co-ordinates of the point A is ______.


If the line joining two points A (2, 0) and B (3, 1) is rotated about A in anticlockwise direction through an angle of 15°, then the equation of the line in new position is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×