English

State Whether the Two Lines in Each of the Following is Parallel, Perpendicular Or Neither. Through (9, 5) and (−1, 1); Through (3, −5) and (8, −3) - Mathematics

Advertisements
Advertisements

Question

State whether the two lines in each of the following are parallel, perpendicular or neither.

Through (9, 5) and (−1, 1); through (3, −5) and (8, −3)

Answer in Brief

Solution

Through (9, 5) and (−1, 1); through (3, −5) and (8, −3)

Let m1 be the slope of the line joining (9, 5) and (−1, 1) and m2 be the slope of the line joining (3, −5) and (8, −3).

\[\therefore m_1 = \frac{y_2 - y_1}{x_2 - x_1} = \frac{1 - 5}{- 1 - 9} = \frac{- 4}{- 10} = \frac{2}{5} \text { and } m_2 = \frac{y_2 - y_1}{x_2 - x_1} = \frac{- 3 + 5}{8 - 3} = \frac{2}{5}\]

\[\text { Since, } m_1 = m_2\]

Therefore, the given lines are parallel.

shaalaa.com
  Is there an error in this question or solution?
Chapter 23: The straight lines - Exercise 23.1 [Page 13]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 23 The straight lines
Exercise 23.1 | Q 3.2 | Page 13

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

The base of an equilateral triangle with side 2a lies along they y-axis such that the mid point of the base is at the origin. Find vertices of the triangle.


Find the value of x for which the points (x, –1), (2, 1) and (4, 5) are collinear.


Find the value of p so that the three lines 3x + y – 2 = 0, px + 2y – 3 = 0 and 2x – y – 3 = 0 may intersect at one point.


Find the equation of the lines through the point (3, 2) which make an angle of 45° with the line x –2y = 3.


Find the slope of the lines which make the following angle with the positive direction of x-axis: 

\[\frac{3\pi}{4}\]


Find the slope of a line passing through the following point:

 (−3, 2) and (1, 4)


Find the slope of a line passing through the following point:

(3, −5), and (1, 2)


State whether the two lines in each of the following is parallel, perpendicular or neither.

Through (6, 3) and (1, 1); through (−2, 5) and (2, −5)


What can be said regarding a line if its slope is positive ?


Without using Pythagoras theorem, show that the points A (0, 4), B (1, 2) and C (3, 3) are the vertices of a right angled triangle.


The slope of a line is double of the slope of another line. If tangents of the angle between them is \[\frac{1}{3}\],find the slopes of the other line.


Without using the distance formula, show that points (−2, −1), (4, 0), (3, 3) and (−3, 2) are the vertices of a parallelogram.


Find the angle between the X-axis and the line joining the points (3, −1) and (4, −2).


Find the value of x for which the points (x, −1), (2, 1) and (4, 5) are collinear.


Find the angle between X-axis and the line joining the points (3, −1) and (4, −2).


Find the equation of the strainght line intersecting y-axis at a distance of 2 units above the origin and making an angle of 30° with the positive direction of the x-axis.


Find the equation of the right bisector of the line segment joining the points (3, 4) and (−1, 2).


The line through (h, 3) and (4, 1) intersects the line 7x − 9y − 19 = 0 at right angle. Find the value of h.


Find the image of the point (3, 8) with respect to the line x + 3y = 7 assuming the line to be a plane mirror.


If the slopes of the lines given by the equation ax2 + 2hxy + by2 = 0 are in the ratio 5 : 3, then the ratio h2 : ab = ______.


Point of the curve y2 = 3(x – 2) at which the normal is parallel to the line 2y + 4x + 5 = 0 is ______.


Find the equation to the straight line passing through the point of intersection of the lines 5x – 6y – 1 = 0 and 3x + 2y + 5 = 0 and perpendicular to the line 3x – 5y + 11 = 0.


A ray of light coming from the point (1, 2) is reflected at a point A on the x-axis and then passes through the point (5, 3). Find the coordinates of the point A.


The reflection of the point (4, – 13) about the line 5x + y + 6 = 0 is ______.


Show that the tangent of an angle between the lines `x/a + y/b` = 1 and `x/a - y/b` = 1 is `(2ab)/(a^2 - b^2)`


If the equation of the base of an equilateral triangle is x + y = 2 and the vertex is (2, – 1), then find the length of the side of the triangle.


If p is the length of perpendicular from the origin on the line `x/a + y/b` = 1 and a2, p2, b2 are in A.P, then show that a4 + b4 = 0.


The tangent of angle between the lines whose intercepts on the axes are a, – b and b, – a, respectively, is ______.


Equations of diagonals of the square formed by the lines x = 0, y = 0, x = 1 and y = 1 are ______.


Line joining the points (3, – 4) and (– 2, 6) is perpendicular to the line joining the points (–3, 6) and (9, –18).


Column C1 Column C2
(a) The coordinates of the points
P and Q on the line x + 5y = 13 which
are at a distance of 2 units from the
line 12x – 5y + 26 = 0 are
(i) (3, 1), (–7, 11)
(b) The coordinates of the point on
the line x + y = 4, which are at a  unit
distance from the line 4x + 3y – 10 = 0 are
(ii) `(- 1/3, 11/3), (4/3, 7/3)`
(c) The coordinates of the point on the line
joining A (–2, 5) and B (3, 1) such that
AP = PQ = QB are
(iii) `(1, 12/5), (-3, 16/5)`

The line which passes through the origin and intersect the two lines `(x - 1)/2 = (y + 3)/4 = (z - 5)/3, (x - 4)/2 = (y + 3)/3 = (z - 14)/4`, is ______.


The three straight lines ax + by = c, bx + cy = a and cx + ay = b are collinear, if ______.


If the line joining two points A (2, 0) and B (3, 1) is rotated about A in anticlockwise direction through an angle of 15°, then the equation of the line in new position is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×