English

Show that the tangent of an angle between the lines abxa+yb = 1 and abxa-yb = 1 is abab2aba2-b2 - Mathematics

Advertisements
Advertisements

Question

Show that the tangent of an angle between the lines `x/a + y/b` = 1 and `x/a - y/b` = 1 is `(2ab)/(a^2 - b^2)`

Sum

Solution

Given that: `x/a + y/b` = 1  ......(i)

And `x/a - y/b` = 1   ......(ii)

Slope of equation (i) m1 (say) = `b/a`

And slope of equation (ii) m1 (say) = `b/a`

Let θ be the angle between the equation (i) and (ii)

∴ tan θ = `|(m_1 - m_2)/(1 + m_1m_2)|`

= `|(-b/a - b/a)/(1 + (- b/a)(b/a))|`

⇒ tan θ = `|(- (2b)/a)/(1 - b^2/a^2)|`

= `|(-2ab)/(a^2 - b^2)|`

⇒ tan θ = `(2ab)/(a^2 - b^2)`

Hence proved.

shaalaa.com
  Is there an error in this question or solution?
Chapter 10: Straight Lines - Exercise [Page 178]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 10 Straight Lines
Exercise | Q 6 | Page 178

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Without using the Pythagoras theorem, show that the points (4, 4), (3, 5) and (–1, –1) are the vertices of a right angled triangle.


Find the equation of a line drawn perpendicular to the line `x/4 + y/6 = 1`through the point, where it meets the y-axis.


Find the value of p so that the three lines 3x + y – 2 = 0, px + 2y – 3 = 0 and 2x – y – 3 = 0 may intersect at one point.


Find the slope of a line passing through the following point:

\[(a t_1^2 , 2 a t_1 ) \text { and } (a t_2^2 , 2 a t_2 )\]


Show that the line joining (2, −3) and (−5, 1) is parallel to the line joining (7, −1) and (0, 3).


Show that the line joining (2, −5) and (−2, 5) is perpendicular to the line joining (6, 3) and (1, 1).


Find the angle between the X-axis and the line joining the points (3, −1) and (4, −2).


Line through the points (−2, 6) and (4, 8) is perpendicular to the line through the points (8, 12) and (x, 24). Find the value of x. 


By using the concept of slope, show that the points (−2, −1), (4, 0), (3, 3) and (−3, 2) are the vertices of a parallelogram.


A quadrilateral has vertices (4, 1), (1, 7), (−6, 0) and (−1, −9). Show that the mid-points of the sides of this quadrilateral form a parallelogram.


Find the equation of a straight line with slope −2 and intersecting the x-axis at a distance of 3 units to the left of origin.


Find the angles between the following pair of straight lines:

x − 4y = 3 and 6x − y = 11


Show that the line a2x + ay + 1 = 0 is perpendicular to the line x − ay = 1 for all non-zero real values of a.


The angle between the lines 2x − y + 3 = 0 and x + 2y + 3 = 0 is


The coordinates of the foot of the perpendicular from the point (2, 3) on the line x + y − 11 = 0 are


The reflection of the point (4, −13) about the line 5x + y + 6 = 0 is  


Find k, if the slope of one of the lines given by kx2 + 8xy + y2 = 0 exceeds the slope of the other by 6.


The equation of a line passing through the point (7, - 4) and perpendicular to the line passing through the points (2, 3) and (1 , - 2 ) is ______.


If x + y = k is normal to y2 = 12x, then k is ______.


Point of the curve y2 = 3(x – 2) at which the normal is parallel to the line 2y + 4x + 5 = 0 is ______.


The line passing through (– 2, 0) and (1, 3) makes an angle of ______ with X-axis.


The reflection of the point (4, – 13) about the line 5x + y + 6 = 0 is ______.


The equation of the straight line passing through the point (3, 2) and perpendicular to the line y = x is ______.


Equations of diagonals of the square formed by the lines x = 0, y = 0, x = 1 and y = 1 are ______.


Equations of the lines through the point (3, 2) and making an angle of 45° with the line x – 2y = 3 are ______.


The points A(– 2, 1), B(0, 5), C(– 1, 2) are collinear.


The vertex of an equilateral triangle is (2, 3) and the equation of the opposite side is x + y = 2. Then the other two sides are y – 3 = `(2 +- sqrt(3)) (x - 2)`.


The line `x/a + y/b` = 1 moves in such a way that `1/a^2 + 1/b^2 = 1/c^2`, where c is a constant. The locus of the foot of the perpendicular from the origin on the given line is x2 + y2 = c2.


Column C1 Column C2
(a) The coordinates of the points
P and Q on the line x + 5y = 13 which
are at a distance of 2 units from the
line 12x – 5y + 26 = 0 are
(i) (3, 1), (–7, 11)
(b) The coordinates of the point on
the line x + y = 4, which are at a  unit
distance from the line 4x + 3y – 10 = 0 are
(ii) `(- 1/3, 11/3), (4/3, 7/3)`
(c) The coordinates of the point on the line
joining A (–2, 5) and B (3, 1) such that
AP = PQ = QB are
(iii) `(1, 12/5), (-3, 16/5)`

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×