Advertisements
Advertisements
Question
Find the points on the line x + y = 4 which lie at a unit distance from the line 4x + 3y = 10.
Solution
Let (x1, y1) be any point lying in the equation x + y = 4
∴ x1 + y1 = 4 ....(i)
Distance of the point (x1, y1) from the equation 4x + 3y = 10
`(4x_1 + 3y_1 - 10)/sqrt((4)^2 + (3)^2)` = 1
`|(4x_1 + 3y_1 - 10)/5|` = 1
4x1 + 3y1 – 10 = ± 5
Taking (+) sign 4x1 + 3y1 – 10 = 5
⇒ 4x1 + 3y1 = 15 ......(ii)
From equation (i) we get y1 = 4 – x1
Putting the value of y1 in equation (ii) we get
4x1 + 3(4 – x1) = 15
⇒ 4x1 + 12 – 3x1 = 15
⇒ x1 + 12 = 15
⇒ x1 = 3 and y1 = 4 – 3 = 1
So, the required point is (3, 1)
Now taking (–) sign, we have
4x1 + 3y1 – 10 = – 5
⇒ 4x1 + 3y1 = 5 .....(iii)
From equation (i) we get y1 = 4 – x1
⇒ 4x1 + 3(4 – x1) = 5
⇒ 4x1 + 12 – 3x1 = 5
⇒ x1 = 5 – 12 = – 7
and y1 = 4 – (– 7) = 11
So, the required point is (– 7, 11)
Hence, the required points on the given line are (3, 1) and (–7, 11).
APPEARS IN
RELATED QUESTIONS
Find the points on the x-axis, whose distances from the `x/3 +y/4 = 1` are 4 units.
Find the distance between parallel lines l (x + y) + p = 0 and l (x + y) – r = 0
If sum of the perpendicular distances of a variable point P (x, y) from the lines x + y – 5 = 0 and 3x – 2y+ 7 = 0 is always 10. Show that P must move on a line.
Find the equation of the straight line at a distance of 3 units from the origin such that the perpendicular from the origin to the line makes an angle tan−1 \[\left( \frac{5}{12} \right)\] with the positive direction of x-axi .
A line passes through a point A (1, 2) and makes an angle of 60° with the x-axis and intersects the line x + y = 6 at the point P. Find AP.
Find the distance of the point (2, 3) from the line 2x − 3y + 9 = 0 measured along a line making an angle of 45° with the x-axis.
Find the distance of the point (3, 5) from the line 2x + 3y = 14 measured parallel to a line having slope 1/2.
Find the equation of a line perpendicular to the line \[\sqrt{3}x - y + 5 = 0\] and at a distance of 3 units from the origin.
Find the perpendicular distance from the origin of the perpendicular from the point (1, 2) upon the straight line \[x - \sqrt{3}y + 4 = 0 .\]
Show that the path of a moving point such that its distances from two lines 3x − 2y = 5 and 3x + 2y = 5 are equal is a straight line.
If sum of perpendicular distances of a variable point P (x, y) from the lines x + y − 5 = 0 and 3x − 2y + 7 = 0 is always 10. Show that P must move on a line.
The line segment joining the points (−3, −4) and (1, −2) is divided by y-axis in the ratio
The line segment joining the points (1, 2) and (−2, 1) is divided by the line 3x + 4y = 7 in the ratio ______.
The value of λ for which the lines 3x + 4y = 5, 5x + 4y = 4 and λx + 4y = 6 meet at a point is
The ratio in which the line 3x + 4y + 2 = 0 divides the distance between the line 3x + 4y + 5 = 0 and 3x + 4y − 5 = 0 is
A plane passes through (1, - 2, 1) and is perpendicular to two planes 2x - 2y + z = 0 and x - y + 2z = 4. The distance of the plane from the point (1, 2, 2) is ______.
The shortest distance between the lines
`bar"r" = (hat"i" + 2hat"j" + hat"k") + lambda (hat"i" - hat"j" + hat"k")` and
`bar"r" = (2hat"i" - hat"j" - hat"k") + mu(2hat"i" + hat"j" + 2hat"k")` is
If the tangent to the curve y = 3x2 - 2x + 1 at a point Pis parallel toy = 4x + 3, the co-ordinates of P are
The distance of the point P(1, – 3) from the line 2y – 3x = 4 is ______.
The distance of the point of intersection of the lines 2x – 3y + 5 = 0 and 3x + 4y = 0 from the line 5x – 2y = 0 is ______.
A point equidistant from the lines 4x + 3y + 10 = 0, 5x – 12y + 26 = 0 and 7x + 24y – 50 = 0 is ______.
The value of the λ, if the lines (2x + 3y + 4) + λ (6x – y + 12) = 0 are
Column C1 | Column C2 |
(a) Parallel to y-axis is | (i) λ = `-3/4` |
(b) Perpendicular to 7x + y – 4 = 0 is | (ii) λ = `-1/3` |
(c) Passes through (1, 2) is | (iii) λ = `-17/41` |
(d) Parallel to x axis is | λ = 3 |