Advertisements
Advertisements
Question
Find the equation of a line perpendicular to the line \[\sqrt{3}x - y + 5 = 0\] and at a distance of 3 units from the origin.
Solution
The line perpendicular to \[\sqrt{3}x - y + 5 = 0\] is \[x + \sqrt{3}y + \lambda = 0\]
It is given that the line \[x + \sqrt{3}y + \lambda = 0\] is at a distance of 3 units from the origin.
\[\therefore \left| \frac{\lambda}{\sqrt{1 + 3}} \right| = 3\]
\[ \Rightarrow \lambda = \pm 6\]
Substituting the value of \[\lambda\] we get \[x + \sqrt{3}y \pm 6 = 0\] ,which is equation of the required line.
APPEARS IN
RELATED QUESTIONS
Find the distance between parallel lines:
15x + 8y – 34 = 0 and 15x + 8y + 31 = 0
Find the equation of the line parallel to y-axis and drawn through the point of intersection of the lines x– 7y + 5 = 0 and 3x + y = 0.
If sum of the perpendicular distances of a variable point P (x, y) from the lines x + y – 5 = 0 and 3x – 2y+ 7 = 0 is always 10. Show that P must move on a line.
A ray of light passing through the point (1, 2) reflects on the x-axis at point A and the reflected ray passes through the point (5, 3). Find the coordinates of A.
Prove that the line y − x + 2 = 0 divides the join of points (3, −1) and (8, 9) in the ratio 2 : 3.
Find the equation of the straight line at a distance of 3 units from the origin such that the perpendicular from the origin to the line makes an angle tan−1 \[\left( \frac{5}{12} \right)\] with the positive direction of x-axi .
A line passes through a point A (1, 2) and makes an angle of 60° with the x-axis and intersects the line x + y = 6 at the point P. Find AP.
A line a drawn through A (4, −1) parallel to the line 3x − 4y + 1 = 0. Find the coordinates of the two points on this line which are at a distance of 5 units from A.
Find the distance of the point (2, 3) from the line 2x − 3y + 9 = 0 measured along a line making an angle of 45° with the x-axis.
Find the distance of the point (3, 5) from the line 2x + 3y = 14 measured parallel to a line having slope 1/2.
Find the distance of the point (2, 5) from the line 3x + y + 4 = 0 measured parallel to a line having slope 3/4.
The perpendicular distance of a line from the origin is 5 units and its slope is − 1. Find the equation of the line.
Find the perpendicular distance of the line joining the points (cos θ, sin θ) and (cos ϕ, sin ϕ) from the origin.
What are the points on X-axis whose perpendicular distance from the straight line \[\frac{x}{a} + \frac{y}{b} = 1\] is a ?
What are the points on y-axis whose distance from the line \[\frac{x}{3} + \frac{y}{4} = 1\] is 4 units?
If sum of perpendicular distances of a variable point P (x, y) from the lines x + y − 5 = 0 and 3x − 2y + 7 = 0 is always 10. Show that P must move on a line.
Determine the distance between the pair of parallel lines:
8x + 15y − 34 = 0 and 8x + 15y + 31 = 0
Determine the distance between the pair of parallel lines:
4x + 3y − 11 = 0 and 8x + 6y = 15
Prove that the lines 2x + 3y = 19 and 2x + 3y + 7 = 0 are equidistant from the line 2x + 3y= 6.
Find the ratio in which the line 3x + 4y + 2 = 0 divides the distance between the line 3x + 4y + 5 = 0 and 3x + 4y − 5 = 0
Write the distance between the lines 4x + 3y − 11 = 0 and 8x + 6y − 15 = 0.
If the lines x + ay + a = 0, bx + y + b = 0 and cx + cy + 1 = 0 are concurrent, then write the value of 2abc − ab − bc − ca.
The value of λ for which the lines 3x + 4y = 5, 5x + 4y = 4 and λx + 4y = 6 meet at a point is
A plane passes through (1, - 2, 1) and is perpendicular to two planes 2x - 2y + z = 0 and x - y + 2z = 4. The distance of the plane from the point (1, 2, 2) is ______.
The shortest distance between the lines
`bar"r" = (hat"i" + 2hat"j" + hat"k") + lambda (hat"i" - hat"j" + hat"k")` and
`bar"r" = (2hat"i" - hat"j" - hat"k") + mu(2hat"i" + hat"j" + 2hat"k")` is
If the tangent to the curve y = 3x2 - 2x + 1 at a point Pis parallel toy = 4x + 3, the co-ordinates of P are
If P(α, β) be a point on the line 3x + y = 0 such that the point P and the point Q(1, 1) lie on either side of the line 3x = 4y + 8, then _______.
Show that the locus of the mid-point of the distance between the axes of the variable line x cosα + y sinα = p is `1/x^2 + 1/y^2 = 4/p^2` where p is a constant.
A point moves such that its distance from the point (4, 0) is half that of its distance from the line x = 16. The locus of the point is ______.
If the sum of the distances of a moving point in a plane from the axes is 1, then find the locus of the point.
The distance of the point of intersection of the lines 2x – 3y + 5 = 0 and 3x + 4y = 0 from the line 5x – 2y = 0 is ______.
A point equidistant from the lines 4x + 3y + 10 = 0, 5x – 12y + 26 = 0 and 7x + 24y – 50 = 0 is ______.
The value of the λ, if the lines (2x + 3y + 4) + λ (6x – y + 12) = 0 are
Column C1 | Column C2 |
(a) Parallel to y-axis is | (i) λ = `-3/4` |
(b) Perpendicular to 7x + y – 4 = 0 is | (ii) λ = `-1/3` |
(c) Passes through (1, 2) is | (iii) λ = `-17/41` |
(d) Parallel to x axis is | λ = 3 |
A straight line passes through the origin O meet the parallel lines 4x + 2y = 9 and 2x + y + 6 = 0 at points P and Q respectively. Then, the point O divides the segment Q in the ratio: