Advertisements
Advertisements
Question
A ray of light passing through the point (1, 2) reflects on the x-axis at point A and the reflected ray passes through the point (5, 3). Find the coordinates of A.
Solution
Let BC be the coordinate of that point A (a, 0) along the x-axis. AN is perpendicular to it. PA is an incident ray and AQ is a reflected ray.
⇒ Angle of incidence PAN = Angle of reflection NAQ
⇒ ∠PAB = ∠QAC
⇒ If the inclination of QA is 0 then the inclination of PA will be 180 – θ.
Slope of QA when Q(5, 3) and A(a, 0) then
`tan θ = (0 - 3)/("a" - 5) = (-3)/("a" - 5)`
Slope of PA when P(1, 2) and A(a, 0), then
tan (180° - θ) = `(0 - 2)/("a" - 1)`
tan (180° - θ) = − tan θ
∴ `(-2)/("a" - 1) = (-3)/("a" - 5) = 3/("a" - 5)`
or −2(a − 5) = 3(a − 1)
or −2a + 10 = 3a − 3
or 5a = 13
or a = `13/5`
∴ The coordinates of point A is `(13/5, 0)`.
APPEARS IN
RELATED QUESTIONS
Find the distance of the line 4x + 7y + 5 = 0 from the point (1, 2) along the line 2x – y = 0.
Find the equation of the straight line at a distance of 3 units from the origin such that the perpendicular from the origin to the line makes an angle tan−1 \[\left( \frac{5}{12} \right)\] with the positive direction of x-axi .
Find the distance of the point (2, 3) from the line 2x − 3y + 9 = 0 measured along a line making an angle of 45° with the x-axis.
Find the distance of the point (2, 5) from the line 3x + y + 4 = 0 measured parallel to a line having slope 3/4.
Find the distance of the line 2x + y = 3 from the point (−1, −3) in the direction of the line whose slope is 1.
The perpendicular distance of a line from the origin is 5 units and its slope is − 1. Find the equation of the line.
Find the equation of a line perpendicular to the line \[\sqrt{3}x - y + 5 = 0\] and at a distance of 3 units from the origin.
Find the perpendicular distance of the line joining the points (cos θ, sin θ) and (cos ϕ, sin ϕ) from the origin.
What are the points on X-axis whose perpendicular distance from the straight line \[\frac{x}{a} + \frac{y}{b} = 1\] is a ?
Find the perpendicular distance from the origin of the perpendicular from the point (1, 2) upon the straight line \[x - \sqrt{3}y + 4 = 0 .\]
If sum of perpendicular distances of a variable point P (x, y) from the lines x + y − 5 = 0 and 3x − 2y + 7 = 0 is always 10. Show that P must move on a line.
If the length of the perpendicular from the point (1, 1) to the line ax − by + c = 0 be unity, show that \[\frac{1}{c} + \frac{1}{a} - \frac{1}{b} = \frac{c}{2ab}\] .
Determine the distance between the pair of parallel lines:
4x − 3y − 9 = 0 and 4x − 3y − 24 = 0
Determine the distance between the pair of parallel lines:
y = mx + c and y = mx + d
Determine the distance between the pair of parallel lines:
4x + 3y − 11 = 0 and 8x + 6y = 15
Find the equation of two straight lines which are parallel to x + 7y + 2 = 0 and at unit distance from the point (1, −1).
Answer 3:
Prove that the lines 2x + 3y = 19 and 2x + 3y + 7 = 0 are equidistant from the line 2x + 3y= 6.
Find the equations of the lines through the point of intersection of the lines x − y + 1 = 0 and 2x − 3y+ 5 = 0, whose distance from the point(3, 2) is 7/5.
Write the distance between the lines 4x + 3y − 11 = 0 and 8x + 6y − 15 = 0.
Write the locus of a point the sum of whose distances from the coordinates axes is unity.
The distance between the orthocentre and circumcentre of the triangle with vertices (1, 2), (2, 1) and \[\left( \frac{3 + \sqrt{3}}{2}, \frac{3 + \sqrt{3}}{2} \right)\] is
The area of a triangle with vertices at (−4, −1), (1, 2) and (4, −3) is
The line segment joining the points (1, 2) and (−2, 1) is divided by the line 3x + 4y = 7 in the ratio ______.
The value of λ for which the lines 3x + 4y = 5, 5x + 4y = 4 and λx + 4y = 6 meet at a point is
The shortest distance between the lines
`bar"r" = (hat"i" + 2hat"j" + hat"k") + lambda (hat"i" - hat"j" + hat"k")` and
`bar"r" = (2hat"i" - hat"j" - hat"k") + mu(2hat"i" + hat"j" + 2hat"k")` is
Find the distance between the lines 3x + 4y = 9 and 6x + 8y = 15.
Show that the locus of the mid-point of the distance between the axes of the variable line x cosα + y sinα = p is `1/x^2 + 1/y^2 = 4/p^2` where p is a constant.
If the sum of the distances of a moving point in a plane from the axes is 1, then find the locus of the point.
The distance of the point of intersection of the lines 2x – 3y + 5 = 0 and 3x + 4y = 0 from the line 5x – 2y = 0 is ______.
The distance between the lines y = mx + c1 and y = mx + c2 is ______.
A point moves so that square of its distance from the point (3, –2) is numerically equal to its distance from the line 5x – 12y = 3. The equation of its locus is ______.
The value of the λ, if the lines (2x + 3y + 4) + λ (6x – y + 12) = 0 are
Column C1 | Column C2 |
(a) Parallel to y-axis is | (i) λ = `-3/4` |
(b) Perpendicular to 7x + y – 4 = 0 is | (ii) λ = `-1/3` |
(c) Passes through (1, 2) is | (iii) λ = `-17/41` |
(d) Parallel to x axis is | λ = 3 |