English

Prove that the product of the lengths of the perpendiculars drawn from the points (a2-b2,0) and (-a2-b2,0) to the line xacosθ+ybsinθ=1 is b2. - Mathematics

Advertisements
Advertisements

Question

Prove that the product of the lengths of the perpendiculars drawn from the points `(sqrt(a^2 - b^2), 0)` and `(-sqrta^2-b^2, 0)` to the line `x/a cos theta + y/b sin theta = 1` is `b^2`.

Sum

Solution

Given line `"x"/"a" cos θ + "y"/"b" sin θ - 1 = 0`  .......(i)

Length of perpendicular drawn from `(sqrt("a"^2 - "b"^2), 0)`

p1 = `(sqrt("a"^2 - "b"^2)/"a" cos θ - 1)/ sqrt(cos^2 θ/"a"^2 + (sin^2 θ)/"b"^2)`    .............`[∵ "d" = ("ax"_1 + "by"_1 + "c"_1)/sqrt("a"^2 + "b"^2)]`

Similarly, the length of the perpendicular drawn from `(- sqrt("a"^2 - "b"^2), 0)` to line (i)

p2 = `(-sqrt("a"^2 - "b"^2)/"a" cos θ - 1)/ sqrt(cos^2 θ/"a"^2 + (sin^2 θ)/"b"^2)`

∴ P1P2 = `(sqrt("a"^2 - "b"^2)/"a" cos θ - 1)/ sqrt(cos^2 θ/"a"^2 + (sin^2 θ)/"b"^2) xx (-sqrt("a"^2 - "b"^2)/"a" cos θ - 1)/ sqrt(cos^2 θ/"a"^2 + (sin^2 θ)/"b"^2)` 

= `(-(("a"^2 - "b"^2)/"a"^2 cos^2 θ - 1))/(cos ^2 θ/"a"^2 + (sin^2 θ)/"b"^2)`

= `(-"b"^2 [("a"^2 - "b"^2) cos^2 θ - "a"^2])/("b"^2 cos^2 θ + "a"^2 sin^2 θ)`

= `(-"b"^2 [("a"^2 - "b"^2) cos^2 θ - "a"^2])/("b"^2 cos^2 θ+ "a"^2 (1 - cos^2 θ))`    ..........[∴ sin2 θ = 1 - cos2 θ]

= `(-"b"^2 [("a"^2 - "b"^2) cos^2 θ - "a"^2])/(("b"^2 - "a"^2) cos^2 θ + "a"^2)`

= `(-"b"^2 [("a"^2 - "b"^2) cos^2 θ - "a"^2])/(-("a"^2 - "b"^2) cos^2 θ - "a"^2)`

= `"b"^2`

shaalaa.com
  Is there an error in this question or solution?
Chapter 10: Straight Lines - Miscellaneous Exercise [Page 234]

APPEARS IN

NCERT Mathematics [English] Class 11
Chapter 10 Straight Lines
Miscellaneous Exercise | Q 23 | Page 234

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Reduce the following equation into normal form. Find their perpendicular distances from the origin and angle between perpendicular and the positive x-axis.

`x – sqrt3y + 8 = 0`


Find equation of the line parallel to the line 3x – 4y + 2 = 0 and passing through the point (–2, 3).


Find angles between the lines `sqrt3x + y = 1 and x + sqrt3y = 1`.


Prove that the line through the point (x1, y1) and parallel to the line Ax + By + C = 0 is A (x –x1) + B (y – y1) = 0.


Find the coordinates of the foot of perpendicular from the point (–1, 3) to the line 3x – 4y – 16 = 0.


If three lines whose equations are y = m1x + c1, y = m2x + c2 and y = m3x + c3 are concurrent, then show that m1(c2 – c3) + m2 (c3 – c1) + m3 (c1 – c2) = 0.


The hypotenuse of a right angled triangle has its ends at the points (1, 3) and (−4, 1). Find the equation of the legs (perpendicular sides) of the triangle that are parallel to the axes.


Find the equation of the bisector of angle A of the triangle whose vertices are A (4, 3), B (0, 0) and C(2, 3).


Point R (h, k) divides a line segment between the axes in the ratio 1 : 2. Find the equation of the line.


Find the equation of a line for p = 4, α = 150°.


Find the equation of a straight line on which the perpendicular from the origin makes an angle of 30° with x-axis and which forms a triangle of area \[50/\sqrt{3}\] with the axes.


Find the values of θ and p, if the equation x cos θ + y sin θ = p is the normal form of the line \[\sqrt{3}x + y + 2 = 0\].


Find the point of intersection of the following pairs of lines:

2x − y + 3 = 0 and x + y − 5 = 0


Find the coordinates of the vertices of a triangle, the equations of whose sides are x + y − 4 = 0, 2x − y + 3 = 0 and x − 3y + 2 = 0.


Find the coordinates of the vertices of a triangle, the equations of whose sides are

y (t1 + t2) = 2x + 2a t1t2, y (t2 + t3) = 2x + 2a t2t3 and, y (t3 + t1) = 2x + 2a t1t3.


Find the area of the triangle formed by the line y = m1 x + c1, y = m2 x + c2 and x = 0.


Find the area of the triangle formed by the line x + y − 6 = 0, x − 3y − 2 = 0 and 5x − 3y + 2 = 0.


Find the orthocentre of the triangle the equations of whose sides are x + y = 1, 2x + 3y = 6 and 4x − y + 4 = 0.


Prove that the following sets of three lines are concurrent:

 15x − 18y + 1 = 0, 12x + 10y − 3 = 0 and 6x + 66y − 11 = 0


Find the conditions that the straight lines y = m1 x + c1, y = m2 x + c2 and y = m3 x + c3 may meet in a point.


Show that the straight lines L1 = (b + c) x + ay + 1 = 0, L2 = (c + a) x + by + 1 = 0 and L3 = (a + b) x + cy + 1 = 0 are concurrent.


If the three lines ax + a2y + 1 = 0, bx + b2y + 1 = 0 and cx + c2y + 1 = 0 are concurrent, show that at least two of three constants a, b, c are equal.


If a, b, c are in A.P., prove that the straight lines ax + 2y + 1 = 0, bx + 3y + 1 = 0 and cx + 4y + 1 = 0 are concurrent.


Find the equation of the straight line which has y-intercept equal to \[\frac{4}{3}\] and is perpendicular to 3x − 4y + 11 = 0.


Find the values of α so that the point P (α2, α) lies inside or on the triangle formed by the lines x − 5y+ 6 = 0, x − 3y + 2 = 0 and x − 2y − 3 = 0.


Write the coordinates of the orthocentre of the triangle formed by the lines xy = 0 and x + y = 1.


A (6, 3), B (−3, 5), C (4, −2) and D (x, 3x) are four points. If ∆ DBC : ∆ ABC = 1 : 2, then x is equal to


Two vertices of a triangle are (−2, −1) and (3, 2) and third vertex lies on the line x + y = 5. If the area of the triangle is 4 square units, then the third vertex is


The centroid of a triangle is (2, 7) and two of its vertices are (4, 8) and (−2, 6). The third vertex is


Find the equation of the line where length of the perpendicular segment from the origin to the line is 4 and the inclination of the perpendicular segment with the positive direction of x-axis is 30°.


Find the equation of the straight line which passes through the point (1, – 2) and cuts off equal intercepts from axes.


For what values of a and b the intercepts cut off on the coordinate axes by the line ax + by + 8 = 0 are equal in length but opposite in signs to those cut off by the line 2x – 3y + 6 = 0 on the axes.


Find the equation of the line which passes through the point (– 4, 3) and the portion of the line intercepted between the axes is divided internally in the ratio 5 : 3 by this point.


The line which cuts off equal intercept from the axes and pass through the point (1, –2) is ______.


Locus of the mid-points of the portion of the line x sin θ + y cos θ = p intercepted between the axes is ______.


Reduce the following equation into slope-intercept form and find their slopes and the y-intercepts.

x + 7y = 0


Reduce the following equation into slope-intercept form and find their slopes and the y-intercepts.

6x + 3y – 5 = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×