English

Find the Point of Intersection of the Following Pairs of Lines: 2x − Y + 3 = 0 And X + Y − 5 = 0 - Mathematics

Advertisements
Advertisements

Question

Find the point of intersection of the following pairs of lines:

2x − y + 3 = 0 and x + y − 5 = 0

Answer in Brief

Solution

The equations of the lines are as follows:

2x − y + 3 = 0                   ... (1)
x + y − 5 = 0                     ... (2)
Solving (1) and (2) using cross-multiplication method:

\[\frac{x}{5 - 3} = \frac{y}{3 + 10} = \frac{1}{2 + 1}\]

\[ \Rightarrow \frac{x}{2} = \frac{y}{13} = \frac{1}{3}\]

\[ \Rightarrow x = \frac{2}{3} \text { and y  }= \frac{13}{3}\]

Hence, the point of intersection is \[\left( \frac{2}{3}, \frac{13}{3} \right)\].

shaalaa.com
  Is there an error in this question or solution?
Chapter 23: The straight lines - Exercise 23.1 [Page 77]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 23 The straight lines
Exercise 23.1 | Q 1.1 | Page 77

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find angles between the lines `sqrt3x + y = 1 and x + sqrt3y = 1`.


Prove that the line through the point (x1, y1) and parallel to the line Ax + By + C = 0 is A (x –x1) + B (y – y1) = 0.


Two lines passing through the point (2, 3) intersects each other at an angle of 60°. If slope of one line is 2, find equation of the other line.


Find the coordinates of the foot of perpendicular from the point (–1, 3) to the line 3x – 4y – 16 = 0.


In what ratio, the line joining (–1, 1) and (5, 7) is divided by the line x + y = 4?


Find equation of the line which is equidistant from parallel lines 9x + 6y – 7 = 0 and 3x + 2y + 6 = 0.


A person standing at the junction (crossing) of two straight paths represented by the equations 2x – 3y+ 4 = 0 and 3x + 4y – 5 = 0 wants to reach the path whose equation is 6x – 7y + 8 = 0 in the least time. Find equation of the path that he should follow.


Find the equation of a line that has y-intercept −4 and is parallel to the line joining (2, −5) and (1, 2).


Find the equation of the right bisector of the line segment joining the points A (1, 0) and B (2, 3).


For what values of a and b the intercepts cut off on the coordinate axes by the line ax + by + 8 = 0 are equal in length but opposite in signs to those cut off by the line 2x − 3y + 6 = 0 on the axes. 


Find the equation of the straight line on which the length of the perpendicular from the origin is 2 and the perpendicular makes an angle α with x-axis such that sin α = \[\frac{1}{3}\].


Reduce the equation \[\sqrt{3}\] x + y + 2 = 0 to slope-intercept form and find slope and y-intercept;


Reduce the following equation to the normal form and find p and α in \[x + y + \sqrt{2} = 0\].


Reduce the lines 3 x − 4 y + 4 = 0 and 2 x + 4 y − 5 = 0 to the normal form and hence find which line is nearer to the origin.


Show that the origin is equidistant from the lines 4x + 3y + 10 = 0; 5x − 12y + 26 = 0 and 7x + 24y = 50.


Find the point of intersection of the following pairs of lines:

\[y = m_1 x + \frac{a}{m_1} \text { and }y = m_2 x + \frac{a}{m_2} .\]


Find the area of the triangle formed by the line y = m1 x + c1, y = m2 x + c2 and x = 0.


Prove that the lines  \[y = \sqrt{3}x + 1, y = 4 \text { and } y = - \sqrt{3}x + 2\] form an equilateral triangle.


Prove that the following sets of three lines are concurrent:

 15x − 18y + 1 = 0, 12x + 10y − 3 = 0 and 6x + 66y − 11 = 0


Prove that the following sets of three lines are concurrent:

3x − 5y − 11 = 0, 5x + 3y − 7 = 0 and x + 2y = 0


Prove that the following sets of three lines are concurrent:

\[\frac{x}{a} + \frac{y}{b} = 1, \frac{x}{b} + \frac{y}{a} = 1\text {  and } y = x .\]


Show that the straight lines L1 = (b + c) x + ay + 1 = 0, L2 = (c + a) x + by + 1 = 0 and L3 = (a + b) x + cy + 1 = 0 are concurrent.


Find the equation of the perpendicular bisector of the line joining the points (1, 3) and (3, 1).


Find the coordinates of the foot of the perpendicular from the point (−1, 3) to the line 3x − 4y − 16 = 0.


Write the area of the figure formed by the lines a |x| + b |y| + c = 0.

 

The number of real values of λ for which the lines x − 2y + 3 = 0, λx + 3y + 1 = 0 and 4x − λy + 2 = 0 are concurrent is


If the lines x + q = 0, y − 2 = 0 and 3x + 2y + 5 = 0 are concurrent, then the value of q will be


A point equidistant from the line 4x + 3y + 10 = 0, 5x − 12y + 26 = 0 and 7x+ 24y − 50 = 0 is


Find the equation of the line where length of the perpendicular segment from the origin to the line is 4 and the inclination of the perpendicular segment with the positive direction of x-axis is 30°.


The inclination of the line x – y + 3 = 0 with the positive direction of x-axis is ______.


Locus of the mid-points of the portion of the line x sin θ + y cos θ = p intercepted between the axes is ______.


Reduce the following equation into slope-intercept form and find their slopes and the y-intercepts.

x + 7y = 0


Reduce the following equation into slope-intercept form and find their slopes and the y-intercepts.

6x + 3y – 5 = 0


Reduce the following equation into slope-intercept form and find their slopes and the y-intercepts.

y = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×