English

Prove that the line through the point (x1, y1) and parallel to the line Ax + By + C = 0 is A (x –x1) + B (y – y1) = 0. - Mathematics

Advertisements
Advertisements

Question

Prove that the line through the point (x1, y1) and parallel to the line Ax + By + C = 0 is A (x –x1) + B (y – y1) = 0.

Sum

Solution

Line Ax + By + C = 0

or y = `-"A"/"B" "x" - "C"/"B"`

Slope of line = `-"A"/"B"`

∴ Slope of parallel line = `-"A"/"B"`

The equation of the parallel line passing through (x1, y1)

`"y" - "y"_1 = -"A"/"B"("x" - "x"_1)`

`"B"("y" - "y"_1) = -"A"("x" - "x"_1)`

A(x − x1) + B(y − y1) = 0

shaalaa.com
  Is there an error in this question or solution?
Chapter 10: Straight Lines - Exercise 10.3 [Page 228]

APPEARS IN

NCERT Mathematics [English] Class 11
Chapter 10 Straight Lines
Exercise 10.3 | Q 11 | Page 228

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Reduce the following equation into intercept form and find their intercepts on the axes.

3y + 2 = 0


Find equation of the line parallel to the line 3x – 4y + 2 = 0 and passing through the point (–2, 3).


Two lines passing through the point (2, 3) intersects each other at an angle of 60°. If slope of one line is 2, find equation of the other line.


Find the equation of the right bisector of the line segment joining the points (3, 4) and (–1, 2).


If three lines whose equations are y = m1x + c1, y = m2x + c2 and y = m3x + c3 are concurrent, then show that m1(c2 – c3) + m2 (c3 – c1) + m3 (c1 – c2) = 0.


The hypotenuse of a right angled triangle has its ends at the points (1, 3) and (−4, 1). Find the equation of the legs (perpendicular sides) of the triangle that are parallel to the axes.


Find the equation of the line which intercepts a length 2 on the positive direction of the x-axis and is inclined at an angle of 135° with the positive direction of y-axis.


Find the equation of the right bisector of the line segment joining the points (3, 4) and (−1, 2).


Find the equation of the side BC of the triangle ABC whose vertices are (−1, −2), (0, 1) and (2, 0) respectively. Also, find the equation of the median through (−1, −2).


Find the equation of the bisector of angle A of the triangle whose vertices are A (4, 3), B (0, 0) and C(2, 3).


Point R (h, k) divides a line segment between the axes in the ratio 1 : 2. Find the equation of the line.


Find the equation of the line on which the length of the perpendicular segment from the origin to the line is 4 and the inclination of the perpendicular segment with the positive direction of x-axis is 30°.


Find the equation of the straight line on which the length of the perpendicular from the origin is 2 and the perpendicular makes an angle α with x-axis such that sin α = \[\frac{1}{3}\].


Find the value of θ and p, if the equation x cos θ + y sin θ = p is the normal form of the line \[\sqrt{3}x + y + 2 = 0\].


Find the equation of the straight line which makes a triangle of area \[96\sqrt{3}\] with the axes and perpendicular from the origin to it makes an angle of 30° with Y-axis.


Reduce the following equation to the normal form and find p and α in \[x + \sqrt{3}y - 4 = 0\] .


Reduce the following equation to the normal form and find p and α in y − 2 = 0.


Find the point of intersection of the following pairs of lines:

2x − y + 3 = 0 and x + y − 5 = 0


Find the point of intersection of the following pairs of lines:

\[y = m_1 x + \frac{a}{m_1} \text { and }y = m_2 x + \frac{a}{m_2} .\]


Find the coordinates of the vertices of a triangle, the equations of whose sides are x + y − 4 = 0, 2x − y + 3 = 0 and x − 3y + 2 = 0.


Find the coordinates of the vertices of a triangle, the equations of whose sides are

y (t1 + t2) = 2x + 2a t1t2, y (t2 + t3) = 2x + 2a t2t3 and, y (t3 + t1) = 2x + 2a t1t3.


Prove that the following sets of three lines are concurrent:

\[\frac{x}{a} + \frac{y}{b} = 1, \frac{x}{b} + \frac{y}{a} = 1\text {  and } y = x .\]


Show that the straight lines L1 = (b + c) x + ay + 1 = 0, L2 = (c + a) x + by + 1 = 0 and L3 = (a + b) x + cy + 1 = 0 are concurrent.


Find the equation of the straight line perpendicular to 2x − 3y = 5 and cutting off an intercept 1 on the positive direction of the x-axis.


Find the values of α so that the point P (α2, α) lies inside or on the triangle formed by the lines x − 5y+ 6 = 0, x − 3y + 2 = 0 and x − 2y − 3 = 0.


The equations of the sides AB, BC and CA of ∆ ABC are y − x = 2, x + 2y = 1 and 3x + y + 5 = 0 respectively. The equation of the altitude through B is


The figure formed by the lines ax ± by ± c = 0 is


Two vertices of a triangle are (−2, −1) and (3, 2) and third vertex lies on the line x + y = 5. If the area of the triangle is 4 square units, then the third vertex is


For what values of a and b the intercepts cut off on the coordinate axes by the line ax + by + 8 = 0 are equal in length but opposite in signs to those cut off by the line 2x – 3y + 6 = 0 on the axes.


If the intercept of a line between the coordinate axes is divided by the point (–5, 4) in the ratio 1 : 2, then find the equation of the line.


If the line `x/"a" + y/"b"` = 1 passes through the points (2, –3) and (4, –5), then (a, b) is ______.


Reduce the following equation into slope-intercept form and find their slopes and the y-intercepts.

x + 7y = 0


Reduce the following equation into slope-intercept form and find their slopes and the y-intercepts.

6x + 3y – 5 = 0


Reduce the following equation into intercept form and find their intercepts on the axes.

 3x + 2y – 12 = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×