Advertisements
Advertisements
Question
Reduce the following equation to the normal form and find p and α in y − 2 = 0.
Solution
y − 2 = 0
\[\Rightarrow y = 2\]
\[ \Rightarrow 0 \times x + y = 2\]
\[ \Rightarrow \frac{0 \times x}{\sqrt{0^2 + 1^2}} + \frac{y}{\sqrt{0^2 + 1^2}} = \frac{2}{\sqrt{0^2 + 1^2}} \left[ \text { Dividing both sides by } \sqrt{\left( \text { coefficient of x } \right)^2 + \left( \text { coefficient of y } \right)^2} \right]\]
\[ \Rightarrow 0 \times x + y = 2\]
This is the normal form of the given line, where p = 2,
\[\text { cos }\alpha = 0\] and \[\text { sin }\alpha = 1 \Rightarrow \alpha = {90}^\circ\].
APPEARS IN
RELATED QUESTIONS
Reduce the following equation into normal form. Find their perpendicular distances from the origin and angle between perpendicular and the positive x-axis.
`x – sqrt3y + 8 = 0`
If p and q are the lengths of perpendiculars from the origin to the lines x cos θ – y sin θ = k cos 2θ and xsec θ+ y cosec θ = k, respectively, prove that p2 + 4q2 = k2.
Find the equations of the lines, which cut-off intercepts on the axes whose sum and product are 1 and –6, respectively.
If three lines whose equations are y = m1x + c1, y = m2x + c2 and y = m3x + c3 are concurrent, then show that m1(c2 – c3) + m2 (c3 – c1) + m3 (c1 – c2) = 0.
Prove that the product of the lengths of the perpendiculars drawn from the points `(sqrt(a^2 - b^2), 0)` and `(-sqrta^2-b^2, 0)` to the line `x/a cos theta + y/b sin theta = 1` is `b^2`.
Find the equation of a line which makes an angle of tan−1 (3) with the x-axis and cuts off an intercept of 4 units on negative direction of y-axis.
Find the equation of the line which intercepts a length 2 on the positive direction of the x-axis and is inclined at an angle of 135° with the positive direction of y-axis.
Find the equations of the sides of the triangles the coordinates of whose angular point is respectively (1, 4), (2, −3) and (−1, −2).
Find the equation of a line for p = 8, α = 225°.
Find the value of θ and p, if the equation x cos θ + y sin θ = p is the normal form of the line \[\sqrt{3}x + y + 2 = 0\].
If the straight line through the point P (3, 4) makes an angle π/6 with the x-axis and meets the line 12x + 5y + 10 = 0 at Q, find the length PQ.
Reduce the equation \[\sqrt{3}\] x + y + 2 = 0 to slope-intercept form and find slope and y-intercept;
Reduce the equation\[\sqrt{3}\] x + y + 2 = 0 to intercept form and find intercept on the axes.
Reduce the following equation to the normal form and find p and α in \[x + y + \sqrt{2} = 0\].
Reduce the following equation to the normal form and find p and α in \[x - y + 2\sqrt{2} = 0\].
Reduce the following equation to the normal form and find p and α in x − 3 = 0.
Find the point of intersection of the following pairs of lines:
2x − y + 3 = 0 and x + y − 5 = 0
Find the coordinates of the vertices of a triangle, the equations of whose sides are x + y − 4 = 0, 2x − y + 3 = 0 and x − 3y + 2 = 0.
Find the orthocentre of the triangle the equations of whose sides are x + y = 1, 2x + 3y = 6 and 4x − y + 4 = 0.
Prove that the following sets of three lines are concurrent:
3x − 5y − 11 = 0, 5x + 3y − 7 = 0 and x + 2y = 0
For what value of λ are the three lines 2x − 5y + 3 = 0, 5x − 9y + λ = 0 and x − 2y + 1 = 0 concurrent?
Find the conditions that the straight lines y = m1 x + c1, y = m2 x + c2 and y = m3 x + c3 may meet in a point.
Find the equation of the perpendicular bisector of the line joining the points (1, 3) and (3, 1).
Find the equation of the straight line perpendicular to 2x − 3y = 5 and cutting off an intercept 1 on the positive direction of the x-axis.
If the image of the point (2, 1) with respect to the line mirror be (5, 2), find the equation of the mirror.
The figure formed by the lines ax ± by ± c = 0 is
If the lines x + q = 0, y − 2 = 0 and 3x + 2y + 5 = 0 are concurrent, then the value of q will be
Find the equation of the line which passes through the point (– 4, 3) and the portion of the line intercepted between the axes is divided internally in the ratio 5 : 3 by this point.
If the coordinates of the middle point of the portion of a line intercepted between the coordinate axes is (3, 2), then the equation of the line will be ______.
A line passes through (2, 2) and is perpendicular to the line 3x + y = 3. Its y-intercept is ______.
Locus of the mid-points of the portion of the line x sin θ + y cos θ = p intercepted between the axes is ______.
Reduce the following equation into normal form. Find their perpendicular distances from the origin and angle between perpendicular and the positive x-axis.
y − 2 = 0