English

Find the Conditions that the Straight Lines Y = M1 X + C1, Y = M2 X + C2 and Y = M3 X + C3 May Meet in a Point. - Mathematics

Advertisements
Advertisements

Question

Find the conditions that the straight lines y = m1 x + c1, y = m2 x + c2 and y = m3 x + c3 may meet in a point.

Answer in Brief

Solution

The given lines can be written as follows:

\[m_1 x - y + c_1 = 0\]        ... (1)

\[m_2 x - y + c_2 = 0\]        ... (2) 

\[m_3 x - y + c_3 = 0\]      ... (3)

It is given that the three lines are concurrent.

\[\therefore \begin{vmatrix}m_1 & - 1 & c_1 \\ m_2 & - 1 & c_2 \\ m_3 & - 1 & c_3\end{vmatrix} = 0\]

\[ \Rightarrow m_1 \left( - c_3 + c_2 \right) + 1\left( m_2 c_3 - m_3 c_2 \right) + c_1 \left( - m_2 + m_3 \right) = 0\]

\[ \Rightarrow m_1 \left( c_2 - c_3 \right) + m_2 \left( c_3 - c_1 \right) + m_3 \left( c_1 - c_2 \right) = 0\]

Hence, the required condition is \[m_1 \left( c_2 - c_3 \right) + m_2 \left( c_3 - c_1 \right) + m_3 \left( c_1 - c_2 \right) = 0\].

shaalaa.com
  Is there an error in this question or solution?
Chapter 23: The straight lines - Exercise 23.11 [Page 83]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 23 The straight lines
Exercise 23.11 | Q 3 | Page 83

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Reduce the following equation into intercept form and find their intercepts on the axes.

3y + 2 = 0


Find equation of the line parallel to the line 3x – 4y + 2 = 0 and passing through the point (–2, 3).


In the triangle ABC with vertices A (2, 3), B (4, –1) and C (1, 2), find the equation and length of altitude from the vertex A.


If three lines whose equations are y = m1x + c1, y = m2x + c2 and y = m3x + c3 are concurrent, then show that m1(c2 – c3) + m2 (c3 – c1) + m3 (c1 – c2) = 0.


Prove that the product of the lengths of the perpendiculars drawn from the points `(sqrt(a^2 - b^2), 0)` and `(-sqrta^2-b^2, 0)` to the line `x/a cos theta + y/b sin theta = 1` is `b^2`.


A person standing at the junction (crossing) of two straight paths represented by the equations 2x – 3y+ 4 = 0 and 3x + 4y – 5 = 0 wants to reach the path whose equation is 6x – 7y + 8 = 0 in the least time. Find equation of the path that he should follow.


Find the equation of the right bisector of the line segment joining the points A (1, 0) and B (2, 3).


Find the equations of the diagonals of the square formed by the lines x = 0, y = 0, x = 1 and y =1. 


For what values of a and b the intercepts cut off on the coordinate axes by the line ax + by + 8 = 0 are equal in length but opposite in signs to those cut off by the line 2x − 3y + 6 = 0 on the axes. 


Find the equation of a line for  p = 5, α = 60°.


Find the equation of a line for p = 4, α = 150°.


Find the value of θ and p, if the equation x cos θ + y sin θ = p is the normal form of the line \[\sqrt{3}x + y + 2 = 0\].


Reduce the following equation to the normal form and find p and α in \[x + \sqrt{3}y - 4 = 0\] .


Reduce the following equation to the normal form and find p and α in \[x + y + \sqrt{2} = 0\].


Reduce the equation 3x − 2y + 6 = 0 to the intercept form and find the x and y intercepts.


Find the point of intersection of the following pairs of lines:

2x − y + 3 = 0 and x + y − 5 = 0


Find the coordinates of the vertices of a triangle, the equations of whose sides are x + y − 4 = 0, 2x − y + 3 = 0 and x − 3y + 2 = 0.


Find the coordinates of the vertices of a triangle, the equations of whose sides are

y (t1 + t2) = 2x + 2a t1t2, y (t2 + t3) = 2x + 2a t2t3 and, y (t3 + t1) = 2x + 2a t1t3.


Find the area of the triangle formed by the line y = m1 x + c1, y = m2 x + c2 and x = 0.


Find the area of the triangle formed by the line y = 0, x = 2 and x + 2y = 3.


Find the equations of the medians of a triangle, the equations of whose sides are:
3x + 2y + 6 = 0, 2x − 5y + 4 = 0 and x − 3y − 6 = 0


Prove that the lines  \[y = \sqrt{3}x + 1, y = 4 \text { and } y = - \sqrt{3}x + 2\] form an equilateral triangle.


Show that the area of the triangle formed by the lines y = m1 x, y = m2 x and y = c is equal to \[\frac{c^2}{4}\left( \sqrt{33} + \sqrt{11} \right),\] where m1, m2 are the roots of the equation \[x^2 + \left( \sqrt{3} + 2 \right)x + \sqrt{3} - 1 = 0 .\]


Find the coordinates of the incentre and centroid of the triangle whose sides have the equations 3x− 4y = 0, 12y + 5x = 0 and y − 15 = 0.


If the lines p1 x + q1 y = 1, p2 x + q2 y = 1 and p3 x + q3 y = 1 be concurrent, show that the points (p1, q1), (p2, q2) and (p3, q3) are collinear.


The equations of perpendicular bisectors of the sides AB and AC of a triangle ABC are x − y + 5 = 0 and x + 2y = 0 respectively. If the point A is (1, −2), find the equation of the line BC.


Find the values of α so that the point P (α2, α) lies inside or on the triangle formed by the lines x − 5y+ 6 = 0, x − 3y + 2 = 0 and x − 2y − 3 = 0.


Find the values of the parameter a so that the point (a, 2) is an interior point of the triangle formed by the lines x + y − 4 = 0, 3x − 7y − 8 = 0 and 4x − y − 31 = 0.


If a ≠ b ≠ c, write the condition for which the equations (b − c) x + (c − a) y + (a − b) = 0 and (b3 − c3) x + (c3 − a3) y + (a3 − b3) = 0 represent the same line.


Write the area of the figure formed by the lines a |x| + b |y| + c = 0.

 

The number of real values of λ for which the lines x − 2y + 3 = 0, λx + 3y + 1 = 0 and 4x − λy + 2 = 0 are concurrent is


The equations of the sides AB, BC and CA of ∆ ABC are y − x = 2, x + 2y = 1 and 3x + y + 5 = 0 respectively. The equation of the altitude through B is


If the lines x + q = 0, y − 2 = 0 and 3x + 2y + 5 = 0 are concurrent, then the value of q will be


A point equidistant from the line 4x + 3y + 10 = 0, 5x − 12y + 26 = 0 and 7x+ 24y − 50 = 0 is


The inclination of the line x – y + 3 = 0 with the positive direction of x-axis is ______.


Find the equation of the straight line which passes through the point (1, – 2) and cuts off equal intercepts from axes.


For specifying a straight line, how many geometrical parameters should be known?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×