English

Find the Coordinates of the Vertices of a Triangle, the Equations of Whose Sides Are X + Y − 4 = 0, 2x − Y + 3 = 0 and X − 3y + 2 = 0. - Mathematics

Advertisements
Advertisements

Question

Find the coordinates of the vertices of a triangle, the equations of whose sides are x + y − 4 = 0, 2x − y + 3 = 0 and x − 3y + 2 = 0.

Answer in Brief

Solution

x + y − 4 = 0, 2x − y + 3 = 0 and x − 3y + 2 = 0

x + y − 4 = 0      ... (1)
2x − y + 3 = 0    ... (2)
x − 3y + 2 = 0    ... (3)
Solving (1) and (2) using cross-multiplication method:

\[\frac{x}{3 - 4} = \frac{y}{- 8 - 3} = \frac{1}{- 1 - 2}\]

\[ \Rightarrow x = \frac{1}{3}, y = \frac{11}{3}\]

Solving (1) and (3) using cross-multiplication method:

\[\frac{x}{2 - 12} = \frac{y}{- 4 - 2} = \frac{1}{- 3 - 1}\]

\[ \Rightarrow x = \frac{5}{2}, y = \frac{3}{2}\]

Similarly, solving (2) and (3) using cross-multiplication method:

\[\frac{x}{- 2 + 9} = \frac{y}{3 - 4} = \frac{1}{- 6 + 1}\]

\[ \Rightarrow x = - \frac{7}{5}, y = \frac{1}{5}\]

Hence, the coordinates of the vertices of the triangle are \[\left( \frac{1}{3}, \frac{11}{3} \right)\], \[\left( \frac{5}{2}, \frac{3}{2} \right)\] and \[\left( - \frac{7}{5}, \frac{1}{5} \right)\].

shaalaa.com
  Is there an error in this question or solution?
Chapter 23: The straight lines - Exercise 23.1 [Page 77]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 23 The straight lines
Exercise 23.1 | Q 2.1 | Page 77

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Reduce the following equation into intercept form and find their intercepts on the axes.

3y + 2 = 0


Find angles between the lines `sqrt3x + y = 1 and x + sqrt3y = 1`.


The line through the points (h, 3) and (4, 1) intersects the line 7x – 9y – 19 = 0. at right angle. Find the value of h.


Prove that the line through the point (x1, y1) and parallel to the line Ax + By + C = 0 is A (x –x1) + B (y – y1) = 0.


Find the equation of the right bisector of the line segment joining the points (3, 4) and (–1, 2).


If three lines whose equations are y = m1x + c1, y = m2x + c2 and y = m3x + c3 are concurrent, then show that m1(c2 – c3) + m2 (c3 – c1) + m3 (c1 – c2) = 0.


Find the equation of a line making an angle of 150° with the x-axis and cutting off an intercept 2 from y-axis.


Find the equation of a line which makes an angle of tan−1 (3) with the x-axis and cuts off an intercept of 4 units on negative direction of y-axis.


Find the equation of a line that has y-intercept −4 and is parallel to the line joining (2, −5) and (1, 2).


Find the equation of the line which intercepts a length 2 on the positive direction of the x-axis and is inclined at an angle of 135° with the positive direction of y-axis.


Find the equation of the right bisector of the line segment joining the points (3, 4) and (−1, 2).


Find the equation of the bisector of angle A of the triangle whose vertices are A (4, 3), B (0, 0) and C(2, 3).


Point R (h, k) divides a line segment between the axes in the ratio 1 : 2. Find the equation of the line.


Find the equation of the straight line on which the length of the perpendicular from the origin is 2 and the perpendicular makes an angle α with x-axis such that sin α = \[\frac{1}{3}\].


Find the equation of the straight line upon which the length of the perpendicular from the origin is 2 and the slope of this perpendicular is \[\frac{5}{12}\].


Find the value of θ and p, if the equation x cos θ + y sin θ = p is the normal form of the line \[\sqrt{3}x + y + 2 = 0\].


Find the equation of the straight line which makes a triangle of area \[96\sqrt{3}\] with the axes and perpendicular from the origin to it makes an angle of 30° with Y-axis.


If the straight line through the point P (3, 4) makes an angle π/6 with the x-axis and meets the line 12x + 5y + 10 = 0 at Q, find the length PQ.


Reduce the equation\[\sqrt{3}\] x + y + 2 = 0 to intercept form and find intercept on the axes.


Find the area of the triangle formed by the line x + y − 6 = 0, x − 3y − 2 = 0 and 5x − 3y + 2 = 0.


Prove that the lines  \[y = \sqrt{3}x + 1, y = 4 \text { and } y = - \sqrt{3}x + 2\] form an equilateral triangle.


Find the image of the point (2, 1) with respect to the line mirror x + y − 5 = 0.


Find the coordinates of the foot of the perpendicular from the point (−1, 3) to the line 3x − 4y − 16 = 0.


Find the projection of the point (1, 0) on the line joining the points (−1, 2) and (5, 4).


The equations of perpendicular bisectors of the sides AB and AC of a triangle ABC are x − y + 5 = 0 and x + 2y = 0 respectively. If the point A is (1, −2), find the equation of the line BC.


Find the values of the parameter a so that the point (a, 2) is an interior point of the triangle formed by the lines x + y − 4 = 0, 3x − 7y − 8 = 0 and 4x − y − 31 = 0.


The point which divides the join of (1, 2) and (3, 4) externally in the ratio 1 : 1


The number of real values of λ for which the lines x − 2y + 3 = 0, λx + 3y + 1 = 0 and 4x − λy + 2 = 0 are concurrent is


The centroid of a triangle is (2, 7) and two of its vertices are (4, 8) and (−2, 6). The third vertex is


Find the equation of the line where length of the perpendicular segment from the origin to the line is 4 and the inclination of the perpendicular segment with the positive direction of x-axis is 30°.


Find the equation of the straight line which passes through the point (1, – 2) and cuts off equal intercepts from axes.


A line cutting off intercept – 3 from the y-axis and the tangent at angle to the x-axis is `3/5`, its equation is ______.


If the coordinates of the middle point of the portion of a line intercepted between the coordinate axes is (3, 2), then the equation of the line will be ______.


For specifying a straight line, how many geometrical parameters should be known?


The line which cuts off equal intercept from the axes and pass through the point (1, –2) is ______.


Reduce the following equation into slope-intercept form and find their slopes and the y-intercepts.

x + 7y = 0


Reduce the following equation into slope-intercept form and find their slopes and the y-intercepts.

y = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×