English

Find the Equation of the Straight Line Upon Which the Length of the Perpendicular from the Origin is 2 and the Slope of this Perpendicular is 5 12 . - Mathematics

Advertisements
Advertisements

Question

Find the equation of the straight line upon which the length of the perpendicular from the origin is 2 and the slope of this perpendicular is \[\frac{5}{12}\].

Answer in Brief

Solution

Let the perpendicular drawn from the origin make acute angle \[\alpha\] with the positive x-axis.
Then, we have,

\[\text { tan }\alpha = \frac{5}{12}\]

Here, 

\[\tan\left( {180}^\circ + \alpha \right) = \text { tan }\alpha\]

So, there are two possible lines, AB and CD, on which the perpendicular drawn from the origin has slope equal to \[\frac{5}{12}\].

\[\text { Now }, tan\alpha = \frac{5}{12}\]

\[ \Rightarrow \text { sin }\alpha = \frac{5}{13} \text { and cos }\alpha = \frac{12}{13}\]

Here, p = 2
So, the equations of the lines in normal form are

\[x\text {cos }\alpha + y\text { sin }\alpha = p \text { and } x\cos\left( {180}^\circ + \alpha \right) + y\text { sin }\left( {180}^\circ + \alpha \right) = p\]

\[ \Rightarrow x\text { cos }\alpha + y\text { sin }\alpha = 2 \text { and} - \text { x cos }\alpha - ysin\alpha = 2\]

\[ \Rightarrow \frac{12x}{13} + \frac{5y}{13} = 2 \text { and } - \frac{12x}{13} - \frac{5y}{13} = 2\]

\[ \Rightarrow 12x + 5y = 26 \text { and } 12x + 5y = - 26\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 23: The straight lines - Exercise 23.7 [Page 53]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 23 The straight lines
Exercise 23.7 | Q 6 | Page 53

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Two lines passing through the point (2, 3) intersects each other at an angle of 60°. If slope of one line is 2, find equation of the other line.


Find the equations of the lines, which cut-off intercepts on the axes whose sum and product are 1 and –6, respectively.


If three lines whose equations are y = m1x + c1, y = m2x + c2 and y = m3x + c3 are concurrent, then show that m1(c2 – c3) + m2 (c3 – c1) + m3 (c1 – c2) = 0.


Find the equation of the line passing through the point of intersection of the lines 4x + 7y – 3 = 0 and 2x – 3y + 1 = 0 that has equal intercepts on the axes.


Find the equation of a line that has y-intercept −4 and is parallel to the line joining (2, −5) and (1, 2).


Find the lines through the point (0, 2) making angles \[\frac{\pi}{3} \text { and } \frac{2\pi}{3}\]  with the x-axis. Also, find the lines parallel to them cutting the y-axis at a distance of 2 units below the origin.


Find the equation of the right bisector of the line segment joining the points A (1, 0) and B (2, 3).


Find the equation of the bisector of angle A of the triangle whose vertices are A (4, 3), B (0, 0) and C(2, 3).


For what values of a and b the intercepts cut off on the coordinate axes by the line ax + by + 8 = 0 are equal in length but opposite in signs to those cut off by the line 2x − 3y + 6 = 0 on the axes. 


Find the equation of a line for  p = 5, α = 60°.


Find the equation of a line for p = 8, α = 300°.


Find the value of θ and p, if the equation x cos θ + y sin θ = p is the normal form of the line \[\sqrt{3}x + y + 2 = 0\].


Reduce the equation \[\sqrt{3}\] x + y + 2 = 0 to slope-intercept form and find slope and y-intercept;


Reduce the following equation to the normal form and find p and α in \[x + \sqrt{3}y - 4 = 0\] .


Reduce the following equation to the normal form and find p and α in \[x + y + \sqrt{2} = 0\].


Reduce the following equation to the normal form and find p and α in y − 2 = 0.


Find the point of intersection of the following pairs of lines:

2x − y + 3 = 0 and x + y − 5 = 0


Find the point of intersection of the following pairs of lines:

\[y = m_1 x + \frac{a}{m_1} \text { and }y = m_2 x + \frac{a}{m_2} .\]


Find the area of the triangle formed by the line y = m1 x + c1, y = m2 x + c2 and x = 0.


Find the equations of the medians of a triangle, the equations of whose sides are:
3x + 2y + 6 = 0, 2x − 5y + 4 = 0 and x − 3y − 6 = 0


Find the coordinates of the incentre and centroid of the triangle whose sides have the equations 3x− 4y = 0, 12y + 5x = 0 and y − 15 = 0.


Prove that the following sets of three lines are concurrent:

 15x − 18y + 1 = 0, 12x + 10y − 3 = 0 and 6x + 66y − 11 = 0


If the lines p1 x + q1 y = 1, p2 x + q2 y = 1 and p3 x + q3 y = 1 be concurrent, show that the points (p1, q1), (p2, q2) and (p3, q3) are collinear.


Find the equation of the right bisector of the line segment joining the points (a, b) and (a1, b1).


Find the image of the point (2, 1) with respect to the line mirror x + y − 5 = 0.


Find the values of the parameter a so that the point (a, 2) is an interior point of the triangle formed by the lines x + y − 4 = 0, 3x − 7y − 8 = 0 and 4x − y − 31 = 0.


If a ≠ b ≠ c, write the condition for which the equations (b − c) x + (c − a) y + (a − b) = 0 and (b3 − c3) x + (c3 − a3) y + (a3 − b3) = 0 represent the same line.


If the lines ax + 12y + 1 = 0, bx + 13y + 1 = 0 and cx + 14y + 1 = 0 are concurrent, then a, b, c are in


The equations of the sides AB, BC and CA of ∆ ABC are y − x = 2, x + 2y = 1 and 3x + y + 5 = 0 respectively. The equation of the altitude through B is


Two vertices of a triangle are (−2, −1) and (3, 2) and third vertex lies on the line x + y = 5. If the area of the triangle is 4 square units, then the third vertex is


If the lines x + q = 0, y − 2 = 0 and 3x + 2y + 5 = 0 are concurrent, then the value of q will be


Prove that every straight line has an equation of the form Ax + By + C = 0, where A, B and C are constants.


If the intercept of a line between the coordinate axes is divided by the point (–5, 4) in the ratio 1 : 2, then find the equation of the line.


Locus of the mid-points of the portion of the line x sin θ + y cos θ = p intercepted between the axes is ______.


Reduce the following equation into intercept form and find their intercepts on the axes.

 3x + 2y – 12 = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×