Advertisements
Advertisements
Question
Find the values of the parameter a so that the point (a, 2) is an interior point of the triangle formed by the lines x + y − 4 = 0, 3x − 7y − 8 = 0 and 4x − y − 31 = 0.
Solution
Let ABC be the triangle of sides AB, BC and CA whose equations are x + y − 4 = 0, 3x − 7y − 8 = 0 and 4x − y − 31 = 0, respectively.
On solving them, we get
\[A \left( 7, - 3 \right)\],
\[B \left( \frac{18}{5}, \frac{2}{5} \right)\] and \[C \left( \frac{209}{25}, \frac{61}{25} \right)\] as the coordinates of the vertices.
Let P (a, 2) be the given point.
It is given that point P (a,2) lies inside the triangle. So, we have the following:
(i) A and P must lie on the same side of BC.
(ii) B and P must lie on the same side of AC.
(iii) C and P must lie on the same side of AB.
Thus, if A and P lie on the same side of BC, then \[\left( 21 + 21 - 8 \right)\left( 3a - 14 - 8 \right) > 0\]
\[\Rightarrow a > \frac{22}{3}\] ... (1)
If B and P lie on the same side of AC, then \[\left( \frac{4 \times 18}{5} - \frac{2}{5} - 31 \right)\left( 4a - 2 - 31 \right) > 0\]
\[\Rightarrow a < \frac{33}{4}\] ... (2)
If C and P lie on the same side of AB, then
\[\left( \frac{209}{25} + \frac{61}{25} - 4 \right)\left( a + 2 - 4 \right) > 0\]
\[ \Rightarrow \left( \frac{34}{5} - 4 \right)\left( a + 2 - 4 \right) > 0\]
\[\Rightarrow a > 2\] ... (3)
From (1), (2) and (3), we get:
\[a \in \left( \frac{22}{3}, \frac{33}{4} \right)\]
APPEARS IN
RELATED QUESTIONS
Two lines passing through the point (2, 3) intersects each other at an angle of 60°. If slope of one line is 2, find equation of the other line.
Find the equation of the right bisector of the line segment joining the points (3, 4) and (–1, 2).
A person standing at the junction (crossing) of two straight paths represented by the equations 2x – 3y+ 4 = 0 and 3x + 4y – 5 = 0 wants to reach the path whose equation is 6x – 7y + 8 = 0 in the least time. Find equation of the path that he should follow.
Find the equation of a line making an angle of 150° with the x-axis and cutting off an intercept 2 from y-axis.
Find the equation of the right bisector of the line segment joining the points A (1, 0) and B (2, 3).
Find the equation of the side BC of the triangle ABC whose vertices are (−1, −2), (0, 1) and (2, 0) respectively. Also, find the equation of the median through (−1, −2).
For what values of a and b the intercepts cut off on the coordinate axes by the line ax + by + 8 = 0 are equal in length but opposite in signs to those cut off by the line 2x − 3y + 6 = 0 on the axes.
Find the equation of the straight line which makes a triangle of area \[96\sqrt{3}\] with the axes and perpendicular from the origin to it makes an angle of 30° with Y-axis.
Find the equation of a straight line on which the perpendicular from the origin makes an angle of 30° with x-axis and which forms a triangle of area \[50/\sqrt{3}\] with the axes.
Reduce the following equation to the normal form and find p and α in \[x + \sqrt{3}y - 4 = 0\] .
Reduce the following equation to the normal form and find p and α in \[x - y + 2\sqrt{2} = 0\].
Reduce the lines 3 x − 4 y + 4 = 0 and 2 x + 4 y − 5 = 0 to the normal form and hence find which line is nearer to the origin.
Show that the origin is equidistant from the lines 4x + 3y + 10 = 0; 5x − 12y + 26 = 0 and 7x + 24y = 50.
Find the point of intersection of the following pairs of lines:
2x − y + 3 = 0 and x + y − 5 = 0
Find the point of intersection of the following pairs of lines:
bx + ay = ab and ax + by = ab.
Find the area of the triangle formed by the line y = 0, x = 2 and x + 2y = 3.
Prove that the following sets of three lines are concurrent:
3x − 5y − 11 = 0, 5x + 3y − 7 = 0 and x + 2y = 0
Prove that the following sets of three lines are concurrent:
\[\frac{x}{a} + \frac{y}{b} = 1, \frac{x}{b} + \frac{y}{a} = 1\text { and } y = x .\]
If the lines p1 x + q1 y = 1, p2 x + q2 y = 1 and p3 x + q3 y = 1 be concurrent, show that the points (p1, q1), (p2, q2) and (p3, q3) are collinear.
If a, b, c are in A.P., prove that the straight lines ax + 2y + 1 = 0, bx + 3y + 1 = 0 and cx + 4y + 1 = 0 are concurrent.
Find the equation of the straight line which has y-intercept equal to \[\frac{4}{3}\] and is perpendicular to 3x − 4y + 11 = 0.
Find the equation of the right bisector of the line segment joining the points (a, b) and (a1, b1).
Find the coordinates of the foot of the perpendicular from the point (−1, 3) to the line 3x − 4y − 16 = 0.
Find the values of α so that the point P (α2, α) lies inside or on the triangle formed by the lines x − 5y+ 6 = 0, x − 3y + 2 = 0 and x − 2y − 3 = 0.
Write the coordinates of the orthocentre of the triangle formed by the lines x2 − y2 = 0 and x + 6y = 18.
If a ≠ b ≠ c, write the condition for which the equations (b − c) x + (c − a) y + (a − b) = 0 and (b3 − c3) x + (c3 − a3) y + (a3 − b3) = 0 represent the same line.
Write the area of the figure formed by the lines a |x| + b |y| + c = 0.
If the lines ax + 12y + 1 = 0, bx + 13y + 1 = 0 and cx + 14y + 1 = 0 are concurrent, then a, b, c are in
The number of real values of λ for which the lines x − 2y + 3 = 0, λx + 3y + 1 = 0 and 4x − λy + 2 = 0 are concurrent is
A (6, 3), B (−3, 5), C (4, −2) and D (x, 3x) are four points. If ∆ DBC : ∆ ABC = 1 : 2, then x is equal to
A point equidistant from the line 4x + 3y + 10 = 0, 5x − 12y + 26 = 0 and 7x+ 24y − 50 = 0 is
Find the equation of a line which passes through the point (2, 3) and makes an angle of 30° with the positive direction of x-axis.
Prove that every straight line has an equation of the form Ax + By + C = 0, where A, B and C are constants.
A line passes through P(1, 2) such that its intercept between the axes is bisected at P. The equation of the line is ______.
For what values of a and b the intercepts cut off on the coordinate axes by the line ax + by + 8 = 0 are equal in length but opposite in signs to those cut off by the line 2x – 3y + 6 = 0 on the axes.
A line cutting off intercept – 3 from the y-axis and the tangent at angle to the x-axis is `3/5`, its equation is ______.