Advertisements
Advertisements
Question
A line passes through P(1, 2) such that its intercept between the axes is bisected at P. The equation of the line is ______.
Options
x + 2y = 5
x – y + 1 = 0
x + y – 3 = 0
2x + y – 4 = 0
Solution
A line passes through P(1, 2) such that its intercept between the axes is bisected at P. The equation of the line is 2x + y – 4 = 0.
Explanation:
We know that the equation of a line making intercepts a and b with x-axis and y-axis, respectively, is given by
`x/a + y/b` = 1.
Here we have 1 = `(a + 0)/2` and 2 = `(0 + b)/2`.
Which give a = 2 and b = 4.
Therefore, the required equation of the line is given by
`x/2 + y/4` = 1 or 2x + y – 4 = 0
APPEARS IN
RELATED QUESTIONS
Reduce the following equation into normal form. Find their perpendicular distances from the origin and angle between perpendicular and the positive x-axis.
`x – sqrt3y + 8 = 0`
Find equation of the line parallel to the line 3x – 4y + 2 = 0 and passing through the point (–2, 3).
Find the coordinates of the foot of perpendicular from the point (–1, 3) to the line 3x – 4y – 16 = 0.
The perpendicular from the origin to the line y = mx + c meets it at the point (–1, 2). Find the values of m and c.
Find the equations of the lines, which cut-off intercepts on the axes whose sum and product are 1 and –6, respectively.
Find equation of the line which is equidistant from parallel lines 9x + 6y – 7 = 0 and 3x + 2y + 6 = 0.
Find the equation of a line which is equidistant from the lines x = − 2 and x = 6.
Find the equation of a line which makes an angle of tan−1 (3) with the x-axis and cuts off an intercept of 4 units on negative direction of y-axis.
Find the equation of the bisector of angle A of the triangle whose vertices are A (4, 3), B (0, 0) and C(2, 3).
For what values of a and b the intercepts cut off on the coordinate axes by the line ax + by + 8 = 0 are equal in length but opposite in signs to those cut off by the line 2x − 3y + 6 = 0 on the axes.
Find the equation of the straight line on which the length of the perpendicular from the origin is 2 and the perpendicular makes an angle α with x-axis such that sin α = \[\frac{1}{3}\].
Find the equation of the straight line upon which the length of the perpendicular from the origin is 2 and the slope of this perpendicular is \[\frac{5}{12}\].
The length of the perpendicular from the origin to a line is 7 and the line makes an angle of 150° with the positive direction of Y-axis. Find the equation of the line.
Find the value of θ and p, if the equation x cos θ + y sin θ = p is the normal form of the line \[\sqrt{3}x + y + 2 = 0\].
Find the equation of the straight line which makes a triangle of area \[96\sqrt{3}\] with the axes and perpendicular from the origin to it makes an angle of 30° with Y-axis.
Reduce the following equation to the normal form and find p and α in \[x + y + \sqrt{2} = 0\].
Find the equations of the medians of a triangle, the equations of whose sides are:
3x + 2y + 6 = 0, 2x − 5y + 4 = 0 and x − 3y − 6 = 0
Prove that the lines \[y = \sqrt{3}x + 1, y = 4 \text { and } y = - \sqrt{3}x + 2\] form an equilateral triangle.
For what value of λ are the three lines 2x − 5y + 3 = 0, 5x − 9y + λ = 0 and x − 2y + 1 = 0 concurrent?
Find the conditions that the straight lines y = m1 x + c1, y = m2 x + c2 and y = m3 x + c3 may meet in a point.
If the lines p1 x + q1 y = 1, p2 x + q2 y = 1 and p3 x + q3 y = 1 be concurrent, show that the points (p1, q1), (p2, q2) and (p3, q3) are collinear.
If a, b, c are in A.P., prove that the straight lines ax + 2y + 1 = 0, bx + 3y + 1 = 0 and cx + 4y + 1 = 0 are concurrent.
Find the equation of the perpendicular bisector of the line joining the points (1, 3) and (3, 1).
Find the projection of the point (1, 0) on the line joining the points (−1, 2) and (5, 4).
Find the equation of the straight line which passes through the point (1, – 2) and cuts off equal intercepts from axes.
Find the equation of the line which passes through the point (– 4, 3) and the portion of the line intercepted between the axes is divided internally in the ratio 5 : 3 by this point.
For specifying a straight line, how many geometrical parameters should be known?
The line which cuts off equal intercept from the axes and pass through the point (1, –2) is ______.
Reduce the following equation into normal form. Find their perpendicular distances from the origin and angle between perpendicular and the positive x-axis.
x − y = 4