हिंदी

A line passes through P(1, 2) such that its intercept between the axes is bisected at P. The equation of the line is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

A line passes through P(1, 2) such that its intercept between the axes is bisected at P. The equation of the line is ______.

विकल्प

  • x + 2y = 5

  • x – y + 1 = 0

  • x + y – 3 = 0

  • 2x + y – 4 = 0

MCQ
रिक्त स्थान भरें

उत्तर

A line passes through P(1, 2) such that its intercept between the axes is bisected at P. The equation of the line is 2x + y – 4 = 0.

Explanation:

We know that the equation of a line making intercepts a and b with x-axis and y-axis, respectively, is given by

`x/a + y/b` = 1.

Here we have 1 = `(a + 0)/2` and 2 = `(0 + b)/2`.

Which give a = 2 and b = 4.

Therefore, the required equation of the line is given by

`x/2 + y/4` = 1 or 2x + y – 4 = 0

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: Straight Lines - Solved Examples [पृष्ठ १७६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 10 Straight Lines
Solved Examples | Q 18 | पृष्ठ १७६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

The line through the points (h, 3) and (4, 1) intersects the line 7x – 9y – 19 = 0. at right angle. Find the value of h.


If p is the length of perpendicular from the origin to the line whose intercepts on the axes are a and b, then show that `1/p^2 = 1/a^2 + 1/b^2`.


If three lines whose equations are y = m1x + c1, y = m2x + c2 and y = m3x + c3 are concurrent, then show that m1(c2 – c3) + m2 (c3 – c1) + m3 (c1 – c2) = 0.


In what ratio, the line joining (–1, 1) and (5, 7) is divided by the line x + y = 4?


A person standing at the junction (crossing) of two straight paths represented by the equations 2x – 3y+ 4 = 0 and 3x + 4y – 5 = 0 wants to reach the path whose equation is 6x – 7y + 8 = 0 in the least time. Find equation of the path that he should follow.


Find the equation of a line which is equidistant from the lines x = − 2 and x = 6.


Find the equations of the diagonals of the square formed by the lines x = 0, y = 0, x = 1 and y =1. 


Find the equation of a line for p = 4, α = 150°.


Find the equation of the straight line which makes a triangle of area \[96\sqrt{3}\] with the axes and perpendicular from the origin to it makes an angle of 30° with Y-axis.


If the straight line through the point P (3, 4) makes an angle π/6 with the x-axis and meets the line 12x + 5y + 10 = 0 at Q, find the length PQ.


Reduce the following equation to the normal form and find p and α in y − 2 = 0.


Find the point of intersection of the following pairs of lines:

bx + ay = ab and ax + by = ab.


Prove that the following sets of three lines are concurrent:

\[\frac{x}{a} + \frac{y}{b} = 1, \frac{x}{b} + \frac{y}{a} = 1\text {  and } y = x .\]


If the lines p1 x + q1 y = 1, p2 x + q2 y = 1 and p3 x + q3 y = 1 be concurrent, show that the points (p1, q1), (p2, q2) and (p3, q3) are collinear.


Find the equation of the right bisector of the line segment joining the points (a, b) and (a1, b1).


Find the values of the parameter a so that the point (a, 2) is an interior point of the triangle formed by the lines x + y − 4 = 0, 3x − 7y − 8 = 0 and 4x − y − 31 = 0.


Two vertices of a triangle are (−2, −1) and (3, 2) and third vertex lies on the line x + y = 5. If the area of the triangle is 4 square units, then the third vertex is


Find the equation of a line which passes through the point (2, 3) and makes an angle of 30° with the positive direction of x-axis.


Find the equation of the line which passes through the point (– 4, 3) and the portion of the line intercepted between the axes is divided internally in the ratio 5 : 3 by this point.


A line passes through (2, 2) and is perpendicular to the line 3x + y = 3. Its y-intercept is ______.


The line which cuts off equal intercept from the axes and pass through the point (1, –2) is ______.


Reduce the following equation into slope-intercept form and find their slopes and the y-intercepts.

6x + 3y – 5 = 0


Reduce the following equation into normal form. Find their perpendicular distances from the origin and angle between perpendicular and the positive x-axis.

y − 2 = 0


Reduce the following equation into normal form. Find their perpendicular distances from the origin and angle between perpendicular and the positive x-axis.

x − y = 4


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×