Advertisements
Advertisements
प्रश्न
If three lines whose equations are y = m1x + c1, y = m2x + c2 and y = m3x + c3 are concurrent, then show that m1(c2 – c3) + m2 (c3 – c1) + m3 (c1 – c2) = 0.
उत्तर
The equations of the given lines are
y = m1x + c1 …(1)
y = m2x + c2 …(2)
y = m3x + c3 …(3)
On subtracting equation (1) from (2), we obtain
0 = (m2 − m1)x + (c2 − c1)
= (m1 − m2)x = c2 − c1
= `x = (c_2 - c_1)/(m_1 - m_2)`
On substituting this value of x in (1), we obtain
`y = m_1 ((c_2 - c_1)/(m_1 - m_2)) + c_1`
`y = ((m_1c_2 - m_1c_1)/(m_1 - m_2)) + c_1`
`y = (m_1c_2 - m_1c_1 + m_1c_1 - m_2c_1)/(m_1 - m_2)`
`y = (m_1c_2 - m_2c_1)/(m_1 - m_2)`
∴ `((c_2 - c_1)/(m_1 - m_2), (m_1c_2 - m_2c_1)/(m_1 - m_2))` is the point of intersection of lines (1) and (2).
It is given that lines (1), (2), and (3) are concurrent. Hence, the point of intersection of lines (1) and (2) will also satisfy equation (3).
= `(m_1c_2 - m_2c_1)/(m_1 - m_2) = m_3 ((c_2 - c_1)/(m_1 - m_1)) + c_3`
= `(m_1c_2 - m_2c_1)/(m_1 - m_2) = (m_3c_2 - m_3c_1 + c_3m_1 - c_3m_2)/(m_1 - m_2)`
= m1c2 - m2c1 - m3c2 + m3c1 - c3m1 + c3m2 = 0
= m1 (c2 - c3) + m2 (c3 - c1) + m3 (c1 - c2) = 0
Hence, m1 (c2 - c3) + m2 (c3 - c1) + m3 (c1 - c2) = 0
APPEARS IN
संबंधित प्रश्न
Find equation of the line parallel to the line 3x – 4y + 2 = 0 and passing through the point (–2, 3).
Find the equation of the right bisector of the line segment joining the points (3, 4) and (–1, 2).
If p is the length of perpendicular from the origin to the line whose intercepts on the axes are a and b, then show that `1/p^2 = 1/a^2 + 1/b^2`.
The hypotenuse of a right angled triangle has its ends at the points (1, 3) and (−4, 1). Find the equation of the legs (perpendicular sides) of the triangle that are parallel to the axes.
Find the equation of a line which makes an angle of tan−1 (3) with the x-axis and cuts off an intercept of 4 units on negative direction of y-axis.
Find the equation of a line that has y-intercept −4 and is parallel to the line joining (2, −5) and (1, 2).
Find the equation of the right bisector of the line segment joining the points A (1, 0) and B (2, 3).
Find the equation of a line for p = 5, α = 60°.
Find the equation of a line for p = 4, α = 150°.
Find the equation of the line on which the length of the perpendicular segment from the origin to the line is 4 and the inclination of the perpendicular segment with the positive direction of x-axis is 30°.
Find the equation of the straight line on which the length of the perpendicular from the origin is 2 and the perpendicular makes an angle α with x-axis such that sin α = \[\frac{1}{3}\].
Reduce the following equation to the normal form and find p and α in \[x - y + 2\sqrt{2} = 0\].
Find the point of intersection of the following pairs of lines:
bx + ay = ab and ax + by = ab.
Find the equations of the medians of a triangle, the equations of whose sides are:
3x + 2y + 6 = 0, 2x − 5y + 4 = 0 and x − 3y − 6 = 0
Prove that the lines \[y = \sqrt{3}x + 1, y = 4 \text { and } y = - \sqrt{3}x + 2\] form an equilateral triangle.
Find the orthocentre of the triangle the equations of whose sides are x + y = 1, 2x + 3y = 6 and 4x − y + 4 = 0.
For what value of λ are the three lines 2x − 5y + 3 = 0, 5x − 9y + λ = 0 and x − 2y + 1 = 0 concurrent?
Show that the straight lines L1 = (b + c) x + ay + 1 = 0, L2 = (c + a) x + by + 1 = 0 and L3 = (a + b) x + cy + 1 = 0 are concurrent.
If the three lines ax + a2y + 1 = 0, bx + b2y + 1 = 0 and cx + c2y + 1 = 0 are concurrent, show that at least two of three constants a, b, c are equal.
Find the equation of the perpendicular bisector of the line joining the points (1, 3) and (3, 1).
Find the equation of a line which is perpendicular to the line \[\sqrt{3}x - y + 5 = 0\] and which cuts off an intercept of 4 units with the negative direction of y-axis.
Find the equation of the right bisector of the line segment joining the points (a, b) and (a1, b1).
Find the image of the point (2, 1) with respect to the line mirror x + y − 5 = 0.
If the image of the point (2, 1) with respect to the line mirror be (5, 2), find the equation of the mirror.
Find the values of the parameter a so that the point (a, 2) is an interior point of the triangle formed by the lines x + y − 4 = 0, 3x − 7y − 8 = 0 and 4x − y − 31 = 0.
Determine whether the point (−3, 2) lies inside or outside the triangle whose sides are given by the equations x + y − 4 = 0, 3x − 7y + 8 = 0, 4x − y − 31 = 0 .
Write the area of the figure formed by the lines a |x| + b |y| + c = 0.
The point which divides the join of (1, 2) and (3, 4) externally in the ratio 1 : 1
If the lines ax + 12y + 1 = 0, bx + 13y + 1 = 0 and cx + 14y + 1 = 0 are concurrent, then a, b, c are in
The number of real values of λ for which the lines x − 2y + 3 = 0, λx + 3y + 1 = 0 and 4x − λy + 2 = 0 are concurrent is
The equations of the sides AB, BC and CA of ∆ ABC are y − x = 2, x + 2y = 1 and 3x + y + 5 = 0 respectively. The equation of the altitude through B is
Two vertices of a triangle are (−2, −1) and (3, 2) and third vertex lies on the line x + y = 5. If the area of the triangle is 4 square units, then the third vertex is
If the lines x + q = 0, y − 2 = 0 and 3x + 2y + 5 = 0 are concurrent, then the value of q will be
Find the equation of a line which passes through the point (2, 3) and makes an angle of 30° with the positive direction of x-axis.
Find the equation of the straight line which passes through the point (1, – 2) and cuts off equal intercepts from axes.
A line cutting off intercept – 3 from the y-axis and the tangent at angle to the x-axis is `3/5`, its equation is ______.
Reduce the following equation into slope-intercept form and find their slopes and the y-intercepts.
x + 7y = 0
Reduce the following equation into normal form. Find their perpendicular distances from the origin and angle between perpendicular and the positive x-axis.
y − 2 = 0