हिंदी

If the Lines Ax + 12y + 1 = 0, Bx + 13y + 1 = 0 and Cx + 14y + 1 = 0 Are Concurrent, Then A, B, C Are in - Mathematics

Advertisements
Advertisements

प्रश्न

If the lines ax + 12y + 1 = 0, bx + 13y + 1 = 0 and cx + 14y + 1 = 0 are concurrent, then a, b, c are in

विकल्प

  •  H.P.

  • G.P.

  • A.P.

  • none of these

MCQ

उत्तर

 A.P.

The given lines are
ax + 12y + 1 = 0        ... (1)
bx + 13y + 1 = 0        ... (2)
cx + 14y + 1 = 0        ... (3)
It is given that (1), (2) and (3) are concurrent.

\[\begin{vmatrix}a & 12 & 1 \\ b & 13 & 1 \\ c & 14 & 1\end{vmatrix} = 0\]

\[ \Rightarrow a\left( 13 - 14 \right) - 12\left( b - c \right) + 14b - 13c = 0\]

\[ \Rightarrow - a - 12b + 12c + 14b - 13c = 0\]

\[ \Rightarrow - a + 2b - c = 0\]

\[ \Rightarrow 2b = a + c\]

Hence, a, b and c are in AP.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 23: The straight lines - Exercise 23.21 [पृष्ठ १३३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 23 The straight lines
Exercise 23.21 | Q 7 | पृष्ठ १३३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Reduce the following equation into normal form. Find their perpendicular distances from the origin and angle between perpendicular and the positive x-axis.

`x – sqrt3y + 8 = 0`


Prove that the line through the point (x1, y1) and parallel to the line Ax + By + C = 0 is A (x –x1) + B (y – y1) = 0.


Find the equation of the right bisector of the line segment joining the points (3, 4) and (–1, 2).


Find the equation of the line passing through the point of intersection of the lines 4x + 7y – 3 = 0 and 2x – 3y + 1 = 0 that has equal intercepts on the axes.


Find the equation of a line making an angle of 150° with the x-axis and cutting off an intercept 2 from y-axis.


Find the equation of a line which makes an angle of tan−1 (3) with the x-axis and cuts off an intercept of 4 units on negative direction of y-axis.


Find the equation of a line that has y-intercept −4 and is parallel to the line joining (2, −5) and (1, 2).


Find the equation of the right bisector of the line segment joining the points A (1, 0) and B (2, 3).


Point R (h, k) divides a line segment between the axes in the ratio 1 : 2. Find the equation of the line.


Find the equation of a line for  p = 5, α = 60°.


Find the equation of a line for p = 8, α = 225°.


Find the equation of the straight line on which the length of the perpendicular from the origin is 2 and the perpendicular makes an angle α with x-axis such that sin α = \[\frac{1}{3}\].


Find the equation of the straight line which makes a triangle of area \[96\sqrt{3}\] with the axes and perpendicular from the origin to it makes an angle of 30° with Y-axis.


Reduce the equation \[\sqrt{3}\] x + y + 2 = 0 to the normal form and find p and α.


Show that the origin is equidistant from the lines 4x + 3y + 10 = 0; 5x − 12y + 26 = 0 and 7x + 24y = 50.


Find the point of intersection of the following pairs of lines:

bx + ay = ab and ax + by = ab.


Find the point of intersection of the following pairs of lines:

\[y = m_1 x + \frac{a}{m_1} \text { and }y = m_2 x + \frac{a}{m_2} .\]


Find the coordinates of the vertices of a triangle, the equations of whose sides are x + y − 4 = 0, 2x − y + 3 = 0 and x − 3y + 2 = 0.


Find the area of the triangle formed by the line y = 0, x = 2 and x + 2y = 3.


Find the area of the triangle formed by the line x + y − 6 = 0, x − 3y − 2 = 0 and 5x − 3y + 2 = 0.


Show that the area of the triangle formed by the lines y = m1 x, y = m2 x and y = c is equal to \[\frac{c^2}{4}\left( \sqrt{33} + \sqrt{11} \right),\] where m1, m2 are the roots of the equation \[x^2 + \left( \sqrt{3} + 2 \right)x + \sqrt{3} - 1 = 0 .\]


Find the orthocentre of the triangle the equations of whose sides are x + y = 1, 2x + 3y = 6 and 4x − y + 4 = 0.


For what value of λ are the three lines 2x − 5y + 3 = 0, 5x − 9y + λ = 0 and x − 2y + 1 = 0 concurrent?


If a, b, c are in A.P., prove that the straight lines ax + 2y + 1 = 0, bx + 3y + 1 = 0 and cx + 4y + 1 = 0 are concurrent.


Find the equation of the perpendicular bisector of the line joining the points (1, 3) and (3, 1).


Find the projection of the point (1, 0) on the line joining the points (−1, 2) and (5, 4).


The equations of perpendicular bisectors of the sides AB and AC of a triangle ABC are x − y + 5 = 0 and x + 2y = 0 respectively. If the point A is (1, −2), find the equation of the line BC.


If a ≠ b ≠ c, write the condition for which the equations (b − c) x + (c − a) y + (a − b) = 0 and (b3 − c3) x + (c3 − a3) y + (a3 − b3) = 0 represent the same line.


The figure formed by the lines ax ± by ± c = 0 is


The centroid of a triangle is (2, 7) and two of its vertices are (4, 8) and (−2, 6). The third vertex is


If the lines x + q = 0, y − 2 = 0 and 3x + 2y + 5 = 0 are concurrent, then the value of q will be


The inclination of the line x – y + 3 = 0 with the positive direction of x-axis is ______.


A line cutting off intercept – 3 from the y-axis and the tangent at angle to the x-axis is `3/5`, its equation is ______.


If the coordinates of the middle point of the portion of a line intercepted between the coordinate axes is (3, 2), then the equation of the line will be ______.


For specifying a straight line, how many geometrical parameters should be known?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×