Advertisements
Advertisements
प्रश्न
The figure formed by the lines ax ± by ± c = 0 is
विकल्प
a rectangle
a square
a rhombus
none of these
उत्तर
a rhombus
The given lines can be written separately in the following manner:
ax + by + c = 0 ... (1)
ax + by − c = 0 ... (2)
ax − by − c = 0 ... (3)
ax − by − c = 0 ... (4)
Graph of the given lines is given below:
Clearly,
\[\text { AB = BC = CD = DA} = \sqrt{\frac{a^2}{c^2} + \frac{b^2}{c^2}} = \frac{\sqrt{a^2 + b^2}}{\left| c \right|}\]
Thus, the region formed by the given lines is ABCD, which is a rhombus.
APPEARS IN
संबंधित प्रश्न
The line through the points (h, 3) and (4, 1) intersects the line 7x – 9y – 19 = 0. at right angle. Find the value of h.
Prove that the line through the point (x1, y1) and parallel to the line Ax + By + C = 0 is A (x –x1) + B (y – y1) = 0.
Two lines passing through the point (2, 3) intersects each other at an angle of 60°. If slope of one line is 2, find equation of the other line.
Find the coordinates of the foot of perpendicular from the point (–1, 3) to the line 3x – 4y – 16 = 0.
The perpendicular from the origin to the line y = mx + c meets it at the point (–1, 2). Find the values of m and c.
If three lines whose equations are y = m1x + c1, y = m2x + c2 and y = m3x + c3 are concurrent, then show that m1(c2 – c3) + m2 (c3 – c1) + m3 (c1 – c2) = 0.
In what ratio, the line joining (–1, 1) and (5, 7) is divided by the line x + y = 4?
Find equation of the line which is equidistant from parallel lines 9x + 6y – 7 = 0 and 3x + 2y + 6 = 0.
Find the equation of a line making an angle of 150° with the x-axis and cutting off an intercept 2 from y-axis.
Find the equation of the right bisector of the line segment joining the points A (1, 0) and B (2, 3).
Find the equations of the sides of the triangles the coordinates of whose angular point is respectively (1, 4), (2, −3) and (−1, −2).
Find the equation of the side BC of the triangle ABC whose vertices are (−1, −2), (0, 1) and (2, 0) respectively. Also, find the equation of the median through (−1, −2).
For what values of a and b the intercepts cut off on the coordinate axes by the line ax + by + 8 = 0 are equal in length but opposite in signs to those cut off by the line 2x − 3y + 6 = 0 on the axes.
Find the value of θ and p, if the equation x cos θ + y sin θ = p is the normal form of the line \[\sqrt{3}x + y + 2 = 0\].
If the straight line through the point P (3, 4) makes an angle π/6 with the x-axis and meets the line 12x + 5y + 10 = 0 at Q, find the length PQ.
Reduce the equation\[\sqrt{3}\] x + y + 2 = 0 to intercept form and find intercept on the axes.
Reduce the lines 3 x − 4 y + 4 = 0 and 2 x + 4 y − 5 = 0 to the normal form and hence find which line is nearer to the origin.
Find the point of intersection of the following pairs of lines:
2x − y + 3 = 0 and x + y − 5 = 0
Find the point of intersection of the following pairs of lines:
\[y = m_1 x + \frac{a}{m_1} \text { and }y = m_2 x + \frac{a}{m_2} .\]
Find the coordinates of the vertices of a triangle, the equations of whose sides are x + y − 4 = 0, 2x − y + 3 = 0 and x − 3y + 2 = 0.
Find the area of the triangle formed by the line y = m1 x + c1, y = m2 x + c2 and x = 0.
Find the orthocentre of the triangle the equations of whose sides are x + y = 1, 2x + 3y = 6 and 4x − y + 4 = 0.
Prove that the following sets of three lines are concurrent:
15x − 18y + 1 = 0, 12x + 10y − 3 = 0 and 6x + 66y − 11 = 0
For what value of λ are the three lines 2x − 5y + 3 = 0, 5x − 9y + λ = 0 and x − 2y + 1 = 0 concurrent?
Find the equation of the perpendicular bisector of the line joining the points (1, 3) and (3, 1).
Find the equation of the straight line perpendicular to 2x − 3y = 5 and cutting off an intercept 1 on the positive direction of the x-axis.
Find the equation of the right bisector of the line segment joining the points (a, b) and (a1, b1).
If the image of the point (2, 1) with respect to the line mirror be (5, 2), find the equation of the mirror.
Find the coordinates of the foot of the perpendicular from the point (−1, 3) to the line 3x − 4y − 16 = 0.
Write the coordinates of the orthocentre of the triangle formed by the lines x2 − y2 = 0 and x + 6y = 18.
The number of real values of λ for which the lines x − 2y + 3 = 0, λx + 3y + 1 = 0 and 4x − λy + 2 = 0 are concurrent is
A point equidistant from the line 4x + 3y + 10 = 0, 5x − 12y + 26 = 0 and 7x+ 24y − 50 = 0 is
Prove that every straight line has an equation of the form Ax + By + C = 0, where A, B and C are constants.
For what values of a and b the intercepts cut off on the coordinate axes by the line ax + by + 8 = 0 are equal in length but opposite in signs to those cut off by the line 2x – 3y + 6 = 0 on the axes.
The line which cuts off equal intercept from the axes and pass through the point (1, –2) is ______.
Reduce the following equation into intercept form and find their intercepts on the axes.
3x + 2y – 12 = 0