हिंदी

If A, B, C Are in A.P., Prove that the Straight Lines Ax + 2y + 1 = 0, Bx + 3y + 1 = 0 and Cx + 4y + 1 = 0 Are Concurrent. - Mathematics

Advertisements
Advertisements

प्रश्न

If a, b, c are in A.P., prove that the straight lines ax + 2y + 1 = 0, bx + 3y + 1 = 0 and cx + 4y + 1 = 0 are concurrent.

संक्षेप में उत्तर

उत्तर

The given lines can be written as follows:
ax + 2y + 1 = 0           ... (1)
bx + 3y + 1 = 0           ... (2)
cx + 4y + 1 = 0           ... (3)
Consider the following determinant.

\[\begin{vmatrix}a & 2 & 1 \\ b & 3 & 1 \\ c & 4 & 1\end{vmatrix}\]

Applying the transformation \[R_1 \to R_1 - R_2 \text { and } R_2 \to R_2 - R_3\],

\[\begin{vmatrix}a & 2 & 1 \\ b & 3 & 1 \\ c & 4 & 1\end{vmatrix} = \begin{vmatrix}a - b & - 1 & 0 \\ b - c & - 1 & 0 \\ c & 4 & 1\end{vmatrix}\] 

\[\Rightarrow \begin{vmatrix}a & 2 & 1 \\ b & 3 & 1 \\ c & 4 & 1\end{vmatrix} = \left( - a + b + b - c \right) = 2b - a - c\]

Given:
2b = a + c

\[\begin{vmatrix}a & 2 & 1 \\ b & 3 & 1 \\ c & 4 & 1\end{vmatrix} = a + c - a - c = 0\]

Hence, the given lines are concurrent, provided 2b = a + c.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 23: The straight lines - Exercise 23.11 [पृष्ठ ८३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 23 The straight lines
Exercise 23.11 | Q 7 | पृष्ठ ८३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Reduce the following equation into normal form. Find their perpendicular distances from the origin and angle between perpendicular and the positive x-axis.

`x – sqrt3y + 8 = 0`


In the triangle ABC with vertices A (2, 3), B (4, –1) and C (1, 2), find the equation and length of altitude from the vertex A.


If p is the length of perpendicular from the origin to the line whose intercepts on the axes are a and b, then show that `1/p^2 = 1/a^2 + 1/b^2`.


The hypotenuse of a right angled triangle has its ends at the points (1, 3) and (−4, 1). Find the equation of the legs (perpendicular sides) of the triangle that are parallel to the axes.


Find the equation of a line making an angle of 150° with the x-axis and cutting off an intercept 2 from y-axis.


Find the equation of the line which intercepts a length 2 on the positive direction of the x-axis and is inclined at an angle of 135° with the positive direction of y-axis.


Find the equation of the right bisector of the line segment joining the points (3, 4) and (−1, 2).


Find the equation of the bisector of angle A of the triangle whose vertices are A (4, 3), B (0, 0) and C(2, 3).


Find the equation of a line for p = 8, α = 225°.


The length of the perpendicular from the origin to a line is 7 and the line makes an angle of 150° with the positive direction of Y-axis. Find the equation of the line.


Find the value of θ and p, if the equation x cos θ + y sin θ = p is the normal form of the line \[\sqrt{3}x + y + 2 = 0\].


Find the equation of the straight line which makes a triangle of area \[96\sqrt{3}\] with the axes and perpendicular from the origin to it makes an angle of 30° with Y-axis.


Reduce the following equation to the normal form and find p and α in \[x + \sqrt{3}y - 4 = 0\] .


Reduce the following equation to the normal form and find p and α in \[x + y + \sqrt{2} = 0\].


Reduce the following equation to the normal form and find p and α in \[x - y + 2\sqrt{2} = 0\].


Reduce the equation 3x − 2y + 6 = 0 to the intercept form and find the x and y intercepts.


Find the point of intersection of the following pairs of lines:

bx + ay = ab and ax + by = ab.


Find the equations of the medians of a triangle, the equations of whose sides are:
3x + 2y + 6 = 0, 2x − 5y + 4 = 0 and x − 3y − 6 = 0


Find the coordinates of the incentre and centroid of the triangle whose sides have the equations 3x− 4y = 0, 12y + 5x = 0 and y − 15 = 0.


Find the conditions that the straight lines y = m1 x + c1, y = m2 x + c2 and y = m3 x + c3 may meet in a point.


If the lines p1 x + q1 y = 1, p2 x + q2 y = 1 and p3 x + q3 y = 1 be concurrent, show that the points (p1, q1), (p2, q2) and (p3, q3) are collinear.


If the three lines ax + a2y + 1 = 0, bx + b2y + 1 = 0 and cx + c2y + 1 = 0 are concurrent, show that at least two of three constants a, b, c are equal.


Find the equation of a line which is perpendicular to the line \[\sqrt{3}x - y + 5 = 0\] and which cuts off an intercept of 4 units with the negative direction of y-axis.


Find the image of the point (2, 1) with respect to the line mirror x + y − 5 = 0.


Find the coordinates of the foot of the perpendicular from the point (−1, 3) to the line 3x − 4y − 16 = 0.


Find the projection of the point (1, 0) on the line joining the points (−1, 2) and (5, 4).


The equations of the sides AB, BC and CA of ∆ ABC are y − x = 2, x + 2y = 1 and 3x + y + 5 = 0 respectively. The equation of the altitude through B is


Find the equation of a line which passes through the point (2, 3) and makes an angle of 30° with the positive direction of x-axis.


Find the equation of the straight line which passes through the point (1, – 2) and cuts off equal intercepts from axes.


If the intercept of a line between the coordinate axes is divided by the point (–5, 4) in the ratio 1 : 2, then find the equation of the line.


A line cutting off intercept – 3 from the y-axis and the tangent at angle to the x-axis is `3/5`, its equation is ______.


If the line `x/"a" + y/"b"` = 1 passes through the points (2, –3) and (4, –5), then (a, b) is ______.


A line passes through (2, 2) and is perpendicular to the line 3x + y = 3. Its y-intercept is ______.


Reduce the following equation into normal form. Find their perpendicular distances from the origin and angle between perpendicular and the positive x-axis.

y − 2 = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×