हिंदी

Find the Equation of the Right Bisector of the Line Segment Joining the Points (3, 4) and (−1, 2). - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equation of the right bisector of the line segment joining the points (3, 4) and (−1, 2).

संक्षेप में उत्तर

उत्तर

Let the given points be A (3, 4) and B (−1, 2).
Let M be the midpoint of AB. 

\[\therefore \text { Coordinates of } M = \left( \frac{3 - 1}{2}, \frac{4 + 2}{2} \right) = \left( 1, 3 \right)\]

And, slope of AB = \[\frac{2 - 4}{- 1 - 3} = \frac{1}{2}\]

Let m be the slope of the right bisector of the line joining the points (3, 4) and (−1, 2).

\[\therefore m \times \text { Slope of } AB = - 1\]

\[ \Rightarrow m \times \frac{1}{2} = - 1\]

\[ \Rightarrow m = - 2\]

So, the equation of the line that passes through M (1, 3) and has slope −2 is

\[y - 3 = - 2\left( x - 1 \right) \]

\[ \Rightarrow 2x + y - 5 = 0\]

Hence, the equation of the right bisector of the line segment joining the points (3, 4) and (−1, 2) is \[2x + y - 5 = 0\].

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 23: The straight lines - Exercise 23.4 [पृष्ठ २९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 23 The straight lines
Exercise 23.4 | Q 13 | पृष्ठ २९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Reduce the following equation into intercept form and find their intercepts on the axes.

3y + 2 = 0


Reduce the following equation into normal form. Find their perpendicular distances from the origin and angle between perpendicular and the positive x-axis.

`x – sqrt3y + 8 = 0`


Find equation of the line parallel to the line 3x – 4y + 2 = 0 and passing through the point (–2, 3).


Find the coordinates of the foot of perpendicular from the point (–1, 3) to the line 3x – 4y – 16 = 0.


The perpendicular from the origin to the line y = mx + c meets it at the point (–1, 2). Find the values of m and c.


If p and q are the lengths of perpendiculars from the origin to the lines x cos θ – y sin θ = k cos 2θ and xsec θ+ y cosec θ = k, respectively, prove that p2 + 4q2 = k2.


Find the equations of the lines, which cut-off intercepts on the axes whose sum and product are 1 and –6, respectively.


Find equation of the line which is equidistant from parallel lines 9x + 6y – 7 = 0 and 3x + 2y + 6 = 0.


Find the equation of a line which is equidistant from the lines x = − 2 and x = 6.


For what values of a and b the intercepts cut off on the coordinate axes by the line ax + by + 8 = 0 are equal in length but opposite in signs to those cut off by the line 2x − 3y + 6 = 0 on the axes. 


Find the equation of the line on which the length of the perpendicular segment from the origin to the line is 4 and the inclination of the perpendicular segment with the positive direction of x-axis is 30°.


The length of the perpendicular from the origin to a line is 7 and the line makes an angle of 150° with the positive direction of Y-axis. Find the equation of the line.


Find the equation of the straight line which makes a triangle of area \[96\sqrt{3}\] with the axes and perpendicular from the origin to it makes an angle of 30° with Y-axis.


Find the equation of a straight line on which the perpendicular from the origin makes an angle of 30° with x-axis and which forms a triangle of area \[50/\sqrt{3}\] with the axes.


Reduce the following equation to the normal form and find p and α in \[x + y + \sqrt{2} = 0\].


Put the equation \[\frac{x}{a} + \frac{y}{b} = 1\] to the slope intercept form and find its slope and y-intercept.


Find the point of intersection of the following pairs of lines:

\[y = m_1 x + \frac{a}{m_1} \text { and }y = m_2 x + \frac{a}{m_2} .\]


Find the area of the triangle formed by the line y = 0, x = 2 and x + 2y = 3.


Prove that the lines  \[y = \sqrt{3}x + 1, y = 4 \text { and } y = - \sqrt{3}x + 2\] form an equilateral triangle.


Prove that the following sets of three lines are concurrent:

3x − 5y − 11 = 0, 5x + 3y − 7 = 0 and x + 2y = 0


Find the conditions that the straight lines y = m1 x + c1, y = m2 x + c2 and y = m3 x + c3 may meet in a point.


If the three lines ax + a2y + 1 = 0, bx + b2y + 1 = 0 and cx + c2y + 1 = 0 are concurrent, show that at least two of three constants a, b, c are equal.


Find the equation of the perpendicular bisector of the line joining the points (1, 3) and (3, 1).


Find the equation of the straight line perpendicular to 2x − 3y = 5 and cutting off an intercept 1 on the positive direction of the x-axis.


Find the image of the point (2, 1) with respect to the line mirror x + y − 5 = 0.


If the image of the point (2, 1) with respect to the line mirror be (5, 2), find the equation of the mirror.


Find the coordinates of the foot of the perpendicular from the point (−1, 3) to the line 3x − 4y − 16 = 0.


Find the projection of the point (1, 0) on the line joining the points (−1, 2) and (5, 4).


Write the coordinates of the orthocentre of the triangle formed by the lines xy = 0 and x + y = 1.


The equations of the sides AB, BC and CA of ∆ ABC are y − x = 2, x + 2y = 1 and 3x + y + 5 = 0 respectively. The equation of the altitude through B is


A (6, 3), B (−3, 5), C (4, −2) and D (x, 3x) are four points. If ∆ DBC : ∆ ABC = 1 : 2, then x is equal to


Prove that every straight line has an equation of the form Ax + By + C = 0, where A, B and C are constants.


Find the equation of the straight line which passes through the point (1, – 2) and cuts off equal intercepts from axes.


Find the equation of the lines which passes through the point (3, 4) and cuts off intercepts from the coordinate axes such that their sum is 14.


If the coordinates of the middle point of the portion of a line intercepted between the coordinate axes is (3, 2), then the equation of the line will be ______.


Reduce the following equation into slope-intercept form and find their slopes and the y-intercepts.

x + 7y = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×