हिंदी

Find the Equation of the Line on Which the Length of the Perpendicular Segment from the Origin to the Line is 4 and the Inclination of the Perpendicular Segment with the Positive Direction of X-a - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equation of the line on which the length of the perpendicular segment from the origin to the line is 4 and the inclination of the perpendicular segment with the positive direction of x-axis is 30°.

संक्षेप में उत्तर

उत्तर

Given:p = 4 and ω = 30°.
Equation of the line in normal form is

\[x \cos \omega + y \sin \omega = p\]

\[ \Rightarrow x \cos \left( {30}^\circ\right) + y \sin \left( {30}^\circ \right) = 4\]

\[ \Rightarrow x\frac{\sqrt{3}}{2} + y\frac{1}{2} = 4\]

\[ \Rightarrow \sqrt{3}x + y = 8\]

Hence, the equation of the line is \[\sqrt{3}x + y = 8\].

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 23: The straight lines - Exercise 23.7 [पृष्ठ ५३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 23 The straight lines
Exercise 23.7 | Q 2 | पृष्ठ ५३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find equation of the line perpendicular to the line x – 7y + 5 = 0 and having x intercept 3.


Prove that the line through the point (x1, y1) and parallel to the line Ax + By + C = 0 is A (x –x1) + B (y – y1) = 0.


Two lines passing through the point (2, 3) intersects each other at an angle of 60°. If slope of one line is 2, find equation of the other line.


In the triangle ABC with vertices A (2, 3), B (4, –1) and C (1, 2), find the equation and length of altitude from the vertex A.


If p is the length of perpendicular from the origin to the line whose intercepts on the axes are a and b, then show that `1/p^2 = 1/a^2 + 1/b^2`.


Find the equations of the lines, which cut-off intercepts on the axes whose sum and product are 1 and –6, respectively.


Find the equation of a line which is equidistant from the lines x = − 2 and x = 6.


Find the equation of a line making an angle of 150° with the x-axis and cutting off an intercept 2 from y-axis.


Find the equation of the right bisector of the line segment joining the points (3, 4) and (−1, 2).


Find the equation of the bisector of angle A of the triangle whose vertices are A (4, 3), B (0, 0) and C(2, 3).


Reduce the equation \[\sqrt{3}\] x + y + 2 = 0 to the normal form and find p and α.


Reduce the following equation to the normal form and find p and α in \[x + \sqrt{3}y - 4 = 0\] .


Reduce the following equation to the normal form and find p and α in y − 2 = 0.


Find the point of intersection of the following pairs of lines:

2x − y + 3 = 0 and x + y − 5 = 0


Find the point of intersection of the following pairs of lines:

\[y = m_1 x + \frac{a}{m_1} \text { and }y = m_2 x + \frac{a}{m_2} .\]


Find the equations of the medians of a triangle, the equations of whose sides are:
3x + 2y + 6 = 0, 2x − 5y + 4 = 0 and x − 3y − 6 = 0


Prove that the lines  \[y = \sqrt{3}x + 1, y = 4 \text { and } y = - \sqrt{3}x + 2\] form an equilateral triangle.


If the lines p1 x + q1 y = 1, p2 x + q2 y = 1 and p3 x + q3 y = 1 be concurrent, show that the points (p1, q1), (p2, q2) and (p3, q3) are collinear.


Show that the straight lines L1 = (b + c) x + ay + 1 = 0, L2 = (c + a) x + by + 1 = 0 and L3 = (a + b) x + cy + 1 = 0 are concurrent.


Find the equation of the right bisector of the line segment joining the points (a, b) and (a1, b1).


Find the image of the point (2, 1) with respect to the line mirror x + y − 5 = 0.


If the image of the point (2, 1) with respect to the line mirror be (5, 2), find the equation of the mirror.


Find the values of the parameter a so that the point (a, 2) is an interior point of the triangle formed by the lines x + y − 4 = 0, 3x − 7y − 8 = 0 and 4x − y − 31 = 0.


Write the coordinates of the orthocentre of the triangle formed by the lines x2 − y2 = 0 and x + 6y = 18.


The figure formed by the lines ax ± by ± c = 0 is


If the lines x + q = 0, y − 2 = 0 and 3x + 2y + 5 = 0 are concurrent, then the value of q will be


Find the equation of a line which passes through the point (2, 3) and makes an angle of 30° with the positive direction of x-axis.


Find the equation of the straight line which passes through the point (1, – 2) and cuts off equal intercepts from axes.


For what values of a and b the intercepts cut off on the coordinate axes by the line ax + by + 8 = 0 are equal in length but opposite in signs to those cut off by the line 2x – 3y + 6 = 0 on the axes.


If the intercept of a line between the coordinate axes is divided by the point (–5, 4) in the ratio 1 : 2, then find the equation of the line.


Find the equation of the line which passes through the point (– 4, 3) and the portion of the line intercepted between the axes is divided internally in the ratio 5 : 3 by this point.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×