हिंदी

If p is the length of perpendicular from the origin to the line whose intercepts on the axes are a and b, then show that 1p2=1a2+1b2. - Mathematics

Advertisements
Advertisements

प्रश्न

If p is the length of perpendicular from the origin to the line whose intercepts on the axes are a and b, then show that `1/p^2 = 1/a^2 + 1/b^2`.

योग

उत्तर

It is known that the equation of a line whose intercepts on the axes are a and b is

`x/a + y/b = 1`

or bx + ay = ab

or bx + ay - ab = 0       ......(1)

The perpendicular distance (d) of a line Ax + By + C = 0 from a point (x1, y1) is given by d = `|Ax_1 + By_1 + C|/sqrt(A^2 + B^2)`.

On comparing equation (1) to the general equation of line Ax + By + C = 0, we obtain A = b, B = a, and C = -ab

Therefore, if p is the length of the perpendicular from point (x1, y1) = (0, 0) to line (1), we obtain

`p = |A(0) + B(0)-ab|/sqrt(b^2 + a^2)`

= `p = |-ab|/sqrt(a^2 + b^2)`

On sqauring both sides, we obtain

`p^2 = (-ab)^2/(a^2 + b^2)`

= p2 (a2 + b2) = a2b2

= `(a^2 + b^2)/(a^2b^2) = 1/(p^2)`

= `1/p^2 = 1/a^2 + 1/b^2`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: Straight Lines - Exercise 10.3 [पृष्ठ २२८]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
अध्याय 10 Straight Lines
Exercise 10.3 | Q 18 | पृष्ठ २२८

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Reduce the following equation into intercept form and find their intercepts on the axes.

3y + 2 = 0


Find equation of the line parallel to the line 3x – 4y + 2 = 0 and passing through the point (–2, 3).


Find angles between the lines `sqrt3x + y = 1 and x + sqrt3y = 1`.


Find the coordinates of the foot of perpendicular from the point (–1, 3) to the line 3x – 4y – 16 = 0.


Find the equations of the lines, which cut-off intercepts on the axes whose sum and product are 1 and –6, respectively.


Find the equation of the line passing through the point of intersection of the lines 4x + 7y – 3 = 0 and 2x – 3y + 1 = 0 that has equal intercepts on the axes.


Find the equation of a line making an angle of 150° with the x-axis and cutting off an intercept 2 from y-axis.


Find the equation of a line that has y-intercept −4 and is parallel to the line joining (2, −5) and (1, 2).


Find the equation of the line which intercepts a length 2 on the positive direction of the x-axis and is inclined at an angle of 135° with the positive direction of y-axis.


Find the equations of the sides of the triangles the coordinates of whose angular point is respectively (1, 4), (2, −3) and (−1, −2).


Find the equation of the bisector of angle A of the triangle whose vertices are A (4, 3), B (0, 0) and C(2, 3).


Point R (h, k) divides a line segment between the axes in the ratio 1 : 2. Find the equation of the line.


Find the equation of a line for p = 8, α = 300°.


Find the equation of the line on which the length of the perpendicular segment from the origin to the line is 4 and the inclination of the perpendicular segment with the positive direction of x-axis is 30°.


Find the equation of the straight line upon which the length of the perpendicular from the origin is 2 and the slope of this perpendicular is \[\frac{5}{12}\].


The length of the perpendicular from the origin to a line is 7 and the line makes an angle of 150° with the positive direction of Y-axis. Find the equation of the line.


Reduce the equation\[\sqrt{3}\] x + y + 2 = 0 to intercept form and find intercept on the axes.


Reduce the equation \[\sqrt{3}\] x + y + 2 = 0 to the normal form and find p and α.


Reduce the following equation to the normal form and find p and α in y − 2 = 0.


Put the equation \[\frac{x}{a} + \frac{y}{b} = 1\] to the slope intercept form and find its slope and y-intercept.


Prove that the lines  \[y = \sqrt{3}x + 1, y = 4 \text { and } y = - \sqrt{3}x + 2\] form an equilateral triangle.


Prove that the following sets of three lines are concurrent:

 15x − 18y + 1 = 0, 12x + 10y − 3 = 0 and 6x + 66y − 11 = 0


Show that the straight lines L1 = (b + c) x + ay + 1 = 0, L2 = (c + a) x + by + 1 = 0 and L3 = (a + b) x + cy + 1 = 0 are concurrent.


Find the equation of a line which is perpendicular to the line \[\sqrt{3}x - y + 5 = 0\] and which cuts off an intercept of 4 units with the negative direction of y-axis.


Find the equation of the straight line which has y-intercept equal to \[\frac{4}{3}\] and is perpendicular to 3x − 4y + 11 = 0.


Find the values of α so that the point P (α2, α) lies inside or on the triangle formed by the lines x − 5y+ 6 = 0, x − 3y + 2 = 0 and x − 2y − 3 = 0.


Write the area of the figure formed by the lines a |x| + b |y| + c = 0.

 

If the lines x + q = 0, y − 2 = 0 and 3x + 2y + 5 = 0 are concurrent, then the value of q will be


Prove that every straight line has an equation of the form Ax + By + C = 0, where A, B and C are constants.


The inclination of the line x – y + 3 = 0 with the positive direction of x-axis is ______.


Find the equation of the straight line which passes through the point (1, – 2) and cuts off equal intercepts from axes.


For what values of a and b the intercepts cut off on the coordinate axes by the line ax + by + 8 = 0 are equal in length but opposite in signs to those cut off by the line 2x – 3y + 6 = 0 on the axes.


A line cutting off intercept – 3 from the y-axis and the tangent at angle to the x-axis is `3/5`, its equation is ______.


Reduce the following equation into slope-intercept form and find their slopes and the y-intercepts.

y = 0


Reduce the following equation into normal form. Find their perpendicular distances from the origin and angle between perpendicular and the positive x-axis.

y − 2 = 0


Reduce the following equation into normal form. Find their perpendicular distances from the origin and angle between perpendicular and the positive x-axis.

x − y = 4


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×