Advertisements
Advertisements
प्रश्न
Find the values of α so that the point P (α2, α) lies inside or on the triangle formed by the lines x − 5y+ 6 = 0, x − 3y + 2 = 0 and x − 2y − 3 = 0.
उत्तर
Let ABC be the triangle of sides AB, BC and CA whose equations are x − 5y + 6 = 0, x − 3y + 2 = 0 and x − 2y − 3 = 0, respectively.
On solving the equations, we get A (9,3), B (4, 2) and C (13, 5) as the coordinates of the vertices.
It is given that point P (α2, α) lies either inside or on the triangle. The three conditions are given below.
(i) A and P must lie on the same side of BC.
(ii) B and P must lie on the same side of AC.
(iii) C and P must lie on the same side of AB.
If A and P lie on the same side of BC, then
\[\left( 9 - 9 + 2 \right)\left( \alpha^2 - 3\alpha + 2 \right) \geq 0\]
\[ \Rightarrow \left( \alpha - 2 \right)\left( \alpha - 1 \right) \geq 0\]
\[\Rightarrow \alpha \in ( - \infty , 1] \cup [2, \infty )\] ... (1)
If B and P lie on the same side of AC, then
\[\left( 4 - 4 - 3 \right)\left( \alpha^2 - 2\alpha - 3 \right) \geq 0\]
\[ \Rightarrow \left( \alpha - 3 \right)\left( \alpha + 1 \right) \leq 0\]
\[\Rightarrow \alpha \in \left[ - 1, 3 \right]\] ... (2)
If C and P lie on the same side of AB, then
\[\left( 13 - 25 + 6 \right)\left( \alpha^2 - 5\alpha + 6 \right) \geq 0\]
\[ \Rightarrow \left( \alpha - 3 \right)\left( \alpha - 2 \right) \leq 0\]
\[\Rightarrow \alpha \in \left[ 2, 3 \right]\] ... (3)
From (1), (2) and (3), we get: \[\alpha \in \left[ 2, 3 \right]\]
APPEARS IN
संबंधित प्रश्न
Reduce the following equation into intercept form and find their intercepts on the axes.
3y + 2 = 0
Reduce the following equation into normal form. Find their perpendicular distances from the origin and angle between perpendicular and the positive x-axis.
`x – sqrt3y + 8 = 0`
Find equation of the line perpendicular to the line x – 7y + 5 = 0 and having x intercept 3.
The line through the points (h, 3) and (4, 1) intersects the line 7x – 9y – 19 = 0. at right angle. Find the value of h.
Find the equation of the right bisector of the line segment joining the points (3, 4) and (–1, 2).
If p is the length of perpendicular from the origin to the line whose intercepts on the axes are a and b, then show that `1/p^2 = 1/a^2 + 1/b^2`.
Find the equations of the lines, which cut-off intercepts on the axes whose sum and product are 1 and –6, respectively.
If three lines whose equations are y = m1x + c1, y = m2x + c2 and y = m3x + c3 are concurrent, then show that m1(c2 – c3) + m2 (c3 – c1) + m3 (c1 – c2) = 0.
The hypotenuse of a right angled triangle has its ends at the points (1, 3) and (−4, 1). Find the equation of the legs (perpendicular sides) of the triangle that are parallel to the axes.
Find the equation of the bisector of angle A of the triangle whose vertices are A (4, 3), B (0, 0) and C(2, 3).
For what values of a and b the intercepts cut off on the coordinate axes by the line ax + by + 8 = 0 are equal in length but opposite in signs to those cut off by the line 2x − 3y + 6 = 0 on the axes.
Point R (h, k) divides a line segment between the axes in the ratio 1 : 2. Find the equation of the line.
Find the equation of a line for p = 8, α = 225°.
Find the equation of the straight line on which the length of the perpendicular from the origin is 2 and the perpendicular makes an angle α with x-axis such that sin α = \[\frac{1}{3}\].
Find the equation of a straight line on which the perpendicular from the origin makes an angle of 30° with x-axis and which forms a triangle of area \[50/\sqrt{3}\] with the axes.
Reduce the equation \[\sqrt{3}\] x + y + 2 = 0 to slope-intercept form and find slope and y-intercept;
Reduce the equation\[\sqrt{3}\] x + y + 2 = 0 to intercept form and find intercept on the axes.
Reduce the equation \[\sqrt{3}\] x + y + 2 = 0 to the normal form and find p and α.
Reduce the following equation to the normal form and find p and α in \[x + \sqrt{3}y - 4 = 0\] .
Find the point of intersection of the following pairs of lines:
bx + ay = ab and ax + by = ab.
Find the area of the triangle formed by the line y = 0, x = 2 and x + 2y = 3.
Find the orthocentre of the triangle the equations of whose sides are x + y = 1, 2x + 3y = 6 and 4x − y + 4 = 0.
Prove that the following sets of three lines are concurrent:
\[\frac{x}{a} + \frac{y}{b} = 1, \frac{x}{b} + \frac{y}{a} = 1\text { and } y = x .\]
Find the conditions that the straight lines y = m1 x + c1, y = m2 x + c2 and y = m3 x + c3 may meet in a point.
If a, b, c are in A.P., prove that the straight lines ax + 2y + 1 = 0, bx + 3y + 1 = 0 and cx + 4y + 1 = 0 are concurrent.
Find the equation of the straight line which has y-intercept equal to \[\frac{4}{3}\] and is perpendicular to 3x − 4y + 11 = 0.
Find the projection of the point (1, 0) on the line joining the points (−1, 2) and (5, 4).
Write the coordinates of the orthocentre of the triangle formed by the lines x2 − y2 = 0 and x + 6y = 18.
The number of real values of λ for which the lines x − 2y + 3 = 0, λx + 3y + 1 = 0 and 4x − λy + 2 = 0 are concurrent is
The equations of the sides AB, BC and CA of ∆ ABC are y − x = 2, x + 2y = 1 and 3x + y + 5 = 0 respectively. The equation of the altitude through B is
If the lines x + q = 0, y − 2 = 0 and 3x + 2y + 5 = 0 are concurrent, then the value of q will be
Prove that every straight line has an equation of the form Ax + By + C = 0, where A, B and C are constants.
Find the equation of the straight line which passes through the point (1, – 2) and cuts off equal intercepts from axes.
Find the equation of the lines which passes through the point (3, 4) and cuts off intercepts from the coordinate axes such that their sum is 14.
If the intercept of a line between the coordinate axes is divided by the point (–5, 4) in the ratio 1 : 2, then find the equation of the line.
A line cutting off intercept – 3 from the y-axis and the tangent at angle to the x-axis is `3/5`, its equation is ______.
Reduce the following equation into slope-intercept form and find their slopes and the y-intercepts.
x + 7y = 0
Reduce the following equation into intercept form and find their intercepts on the axes.
3x + 2y – 12 = 0