Advertisements
Advertisements
प्रश्न
Find the equation of the lines which passes through the point (3, 4) and cuts off intercepts from the coordinate axes such that their sum is 14.
उत्तर
Equation of line having a and b intercepts on the axis is
`x/a + y/b` = 1 .....(i)
Given that a + b = 14
⇒ b = 14 – a
⇒ `x/a + y/(14 - a)` = 1
If equation (ii) passes through the point (3, 4) then
`3/a + 4/(14 - a)` = 1
⇒ `(3(14 - a) + 4a)/(a(14 - a))` = 1
⇒ 42 + a = 14a – a2
⇒ a2 + a – 14a + 42 = 0
⇒ a2 – 13a + 42 = 0
⇒ a2 – 7a – 6a + 42 = 0
⇒ a(a – 7) – 6(a – 7) = 0
⇒ (a – 6)(a – 7) = 0
⇒ a = 6, 7
∴ b = 14 – 6 = 8, b = 14 – 7 = 7
Hence, the required equation of lines are `x/6 + y/8` = 1
⇒ 4x + 3y = 24
And `x/7 + y/7` = 1
⇒ x + y = 7
APPEARS IN
संबंधित प्रश्न
Reduce the following equation into normal form. Find their perpendicular distances from the origin and angle between perpendicular and the positive x-axis.
`x – sqrt3y + 8 = 0`
Find equation of the line perpendicular to the line x – 7y + 5 = 0 and having x intercept 3.
The line through the points (h, 3) and (4, 1) intersects the line 7x – 9y – 19 = 0. at right angle. Find the value of h.
Find the coordinates of the foot of perpendicular from the point (–1, 3) to the line 3x – 4y – 16 = 0.
If p is the length of perpendicular from the origin to the line whose intercepts on the axes are a and b, then show that `1/p^2 = 1/a^2 + 1/b^2`.
Find equation of the line which is equidistant from parallel lines 9x + 6y – 7 = 0 and 3x + 2y + 6 = 0.
Find the equation of a line which makes an angle of tan−1 (3) with the x-axis and cuts off an intercept of 4 units on negative direction of y-axis.
Find the equation of the bisector of angle A of the triangle whose vertices are A (4, 3), B (0, 0) and C(2, 3).
Find the equations of the diagonals of the square formed by the lines x = 0, y = 0, x = 1 and y =1.
Point R (h, k) divides a line segment between the axes in the ratio 1 : 2. Find the equation of the line.
Find the value of θ and p, if the equation x cos θ + y sin θ = p is the normal form of the line \[\sqrt{3}x + y + 2 = 0\].
Reduce the equation\[\sqrt{3}\] x + y + 2 = 0 to intercept form and find intercept on the axes.
Reduce the following equation to the normal form and find p and α in y − 2 = 0.
Put the equation \[\frac{x}{a} + \frac{y}{b} = 1\] to the slope intercept form and find its slope and y-intercept.
Reduce the lines 3 x − 4 y + 4 = 0 and 2 x + 4 y − 5 = 0 to the normal form and hence find which line is nearer to the origin.
Show that the origin is equidistant from the lines 4x + 3y + 10 = 0; 5x − 12y + 26 = 0 and 7x + 24y = 50.
Find the values of θ and p, if the equation x cos θ + y sin θ = p is the normal form of the line \[\sqrt{3}x + y + 2 = 0\].
If a, b, c are in A.P., prove that the straight lines ax + 2y + 1 = 0, bx + 3y + 1 = 0 and cx + 4y + 1 = 0 are concurrent.
Find the equation of the straight line perpendicular to 2x − 3y = 5 and cutting off an intercept 1 on the positive direction of the x-axis.
The number of real values of λ for which the lines x − 2y + 3 = 0, λx + 3y + 1 = 0 and 4x − λy + 2 = 0 are concurrent is
A (6, 3), B (−3, 5), C (4, −2) and D (x, 3x) are four points. If ∆ DBC : ∆ ABC = 1 : 2, then x is equal to
Find the equation of the line where length of the perpendicular segment from the origin to the line is 4 and the inclination of the perpendicular segment with the positive direction of x-axis is 30°.
Find the equation of the straight line which passes through the point (1, – 2) and cuts off equal intercepts from axes.
Reduce the following equation into slope-intercept form and find their slopes and the y-intercepts.
y = 0
Reduce the following equation into intercept form and find their intercepts on the axes.
3x + 2y – 12 = 0