हिंदी

Find the equation of the right bisector of the line segment joining the points (3, 4) and (–1, 2). - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equation of the right bisector of the line segment joining the points (3, 4) and (–1, 2).

योग

उत्तर

Let the midpoint of the line segment joining the points A(3, 4) and B(−1, 2) be

`"D"((3 - 1)/2, (4 + 2)/2)` or D(1, 3)

Slope of AB, m1 = `(2 - 4)/(-1 -3) = (-2)/(-4) = 1/2`

Let the second line CD be perpendicular to the line AB.

∴ Slope of CD = `- 1/"m"_1 = -1/(1/2) = -2`

Line CD passes through point D

∴ Equation of line CD

y – 3 = –2(x – 1)

= –2x + 2

∴ 2x + y – 5 = 0

Hence, the required equation is 2x + y = 5.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: Straight Lines - Exercise 10.3 [पृष्ठ २२८]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
अध्याय 10 Straight Lines
Exercise 10.3 | Q 13 | पृष्ठ २२८

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find equation of the line parallel to the line 3x – 4y + 2 = 0 and passing through the point (–2, 3).


Find equation of the line perpendicular to the line x – 7y + 5 = 0 and having x intercept 3.


Prove that the line through the point (x1, y1) and parallel to the line Ax + By + C = 0 is A (x –x1) + B (y – y1) = 0.


Find the coordinates of the foot of perpendicular from the point (–1, 3) to the line 3x – 4y – 16 = 0.


In the triangle ABC with vertices A (2, 3), B (4, –1) and C (1, 2), find the equation and length of altitude from the vertex A.


If p is the length of perpendicular from the origin to the line whose intercepts on the axes are a and b, then show that `1/p^2 = 1/a^2 + 1/b^2`.


Find the equations of the lines, which cut-off intercepts on the axes whose sum and product are 1 and –6, respectively.


Find the equation of the line passing through the point of intersection of the lines 4x + 7y – 3 = 0 and 2x – 3y + 1 = 0 that has equal intercepts on the axes.


Find equation of the line which is equidistant from parallel lines 9x + 6y – 7 = 0 and 3x + 2y + 6 = 0.


Find the equation of a line which is equidistant from the lines x = − 2 and x = 6.


Find the lines through the point (0, 2) making angles \[\frac{\pi}{3} \text { and } \frac{2\pi}{3}\]  with the x-axis. Also, find the lines parallel to them cutting the y-axis at a distance of 2 units below the origin.


Find the equation of the side BC of the triangle ABC whose vertices are (−1, −2), (0, 1) and (2, 0) respectively. Also, find the equation of the median through (−1, −2).


Find the equation of a line for p = 4, α = 150°.


Find the equation of the straight line upon which the length of the perpendicular from the origin is 2 and the slope of this perpendicular is \[\frac{5}{12}\].


Find the equation of the straight line which makes a triangle of area \[96\sqrt{3}\] with the axes and perpendicular from the origin to it makes an angle of 30° with Y-axis.


Reduce the equation \[\sqrt{3}\] x + y + 2 = 0 to slope-intercept form and find slope and y-intercept;


Reduce the equation \[\sqrt{3}\] x + y + 2 = 0 to the normal form and find p and α.


Reduce the following equation to the normal form and find p and α in \[x + \sqrt{3}y - 4 = 0\] .


Put the equation \[\frac{x}{a} + \frac{y}{b} = 1\] to the slope intercept form and find its slope and y-intercept.


Find the area of the triangle formed by the line x + y − 6 = 0, x − 3y − 2 = 0 and 5x − 3y + 2 = 0.


Show that the area of the triangle formed by the lines y = m1 x, y = m2 x and y = c is equal to \[\frac{c^2}{4}\left( \sqrt{33} + \sqrt{11} \right),\] where m1, m2 are the roots of the equation \[x^2 + \left( \sqrt{3} + 2 \right)x + \sqrt{3} - 1 = 0 .\]


Find the coordinates of the incentre and centroid of the triangle whose sides have the equations 3x− 4y = 0, 12y + 5x = 0 and y − 15 = 0.


Prove that the following sets of three lines are concurrent:

 15x − 18y + 1 = 0, 12x + 10y − 3 = 0 and 6x + 66y − 11 = 0


If the lines p1 x + q1 y = 1, p2 x + q2 y = 1 and p3 x + q3 y = 1 be concurrent, show that the points (p1, q1), (p2, q2) and (p3, q3) are collinear.


Write the coordinates of the orthocentre of the triangle formed by the lines xy = 0 and x + y = 1.


If a ≠ b ≠ c, write the condition for which the equations (b − c) x + (c − a) y + (a − b) = 0 and (b3 − c3) x + (c3 − a3) y + (a3 − b3) = 0 represent the same line.


A (6, 3), B (−3, 5), C (4, −2) and D (x, 3x) are four points. If ∆ DBC : ∆ ABC = 1 : 2, then x is equal to


Two vertices of a triangle are (−2, −1) and (3, 2) and third vertex lies on the line x + y = 5. If the area of the triangle is 4 square units, then the third vertex is


Find the equation of a line which passes through the point (2, 3) and makes an angle of 30° with the positive direction of x-axis.


Find the equation of the line where length of the perpendicular segment from the origin to the line is 4 and the inclination of the perpendicular segment with the positive direction of x-axis is 30°.


Prove that every straight line has an equation of the form Ax + By + C = 0, where A, B and C are constants.


Find the equation of the lines which passes through the point (3, 4) and cuts off intercepts from the coordinate axes such that their sum is 14.


If the intercept of a line between the coordinate axes is divided by the point (–5, 4) in the ratio 1 : 2, then find the equation of the line.


Reduce the following equation into normal form. Find their perpendicular distances from the origin and angle between perpendicular and the positive x-axis.

x − y = 4


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×