Advertisements
Advertisements
प्रश्न
Find the equation of the straight line which makes a triangle of area \[96\sqrt{3}\] with the axes and perpendicular from the origin to it makes an angle of 30° with Y-axis.
उत्तर
Let AB be the given line and OL = p be the perpendicular drawn from the origin on the line.
Here,
\[\alpha = {60}^\circ\]
So, the equation of the line AB is
\[xcos\alpha + ysin\alpha = p \]
\[ \Rightarrow x\cos {60}^\circ + y\sin {60}^\circ = p\]
\[ \Rightarrow \frac{x}{2} + \frac{\sqrt{3}y}{2} = p\]
\[ \Rightarrow x + \sqrt{3}y = 2p . . . (1)\]
Now, in triangles OLA and OLB
\[\cos {60}^\circ = \frac{OL}{OA} \text { and } \cos {30}^\circ = \frac{OL}{OB}\]
\[ \Rightarrow \frac{1}{2} = \frac{p}{OA} \text { and } \frac{\sqrt{3}}{2} = \frac{p}{OB}\]
\[ \Rightarrow OA = 2p \text { and } OB = \frac{2p}{\sqrt{3}}\]
It is given that the area of triangle OAB is \[96\sqrt{3}\]
\[\therefore \frac{1}{2} \times OA \times OB = 96\sqrt{3}\]
\[ \Rightarrow \frac{1}{2} \times 2p \times \frac{2p}{\sqrt{3}} = 96\sqrt{3}\]
\[ \Rightarrow p^2 = {12}^2 \]
\[ \Rightarrow p = 12\]
Substituting the value of p in (1)
\[x + \sqrt{3}y = 24\]
Hence, the equation of the line AB is
\[x + \sqrt{3}y = 24\]
APPEARS IN
संबंधित प्रश्न
Find equation of the line parallel to the line 3x – 4y + 2 = 0 and passing through the point (–2, 3).
Two lines passing through the point (2, 3) intersects each other at an angle of 60°. If slope of one line is 2, find equation of the other line.
In the triangle ABC with vertices A (2, 3), B (4, –1) and C (1, 2), find the equation and length of altitude from the vertex A.
If p is the length of perpendicular from the origin to the line whose intercepts on the axes are a and b, then show that `1/p^2 = 1/a^2 + 1/b^2`.
A person standing at the junction (crossing) of two straight paths represented by the equations 2x – 3y+ 4 = 0 and 3x + 4y – 5 = 0 wants to reach the path whose equation is 6x – 7y + 8 = 0 in the least time. Find equation of the path that he should follow.
Find the equation of a line which is equidistant from the lines x = − 2 and x = 6.
Find the equation of a line making an angle of 150° with the x-axis and cutting off an intercept 2 from y-axis.
Find the equation of the side BC of the triangle ABC whose vertices are (−1, −2), (0, 1) and (2, 0) respectively. Also, find the equation of the median through (−1, −2).
For what values of a and b the intercepts cut off on the coordinate axes by the line ax + by + 8 = 0 are equal in length but opposite in signs to those cut off by the line 2x − 3y + 6 = 0 on the axes.
Find the equation of a line for p = 5, α = 60°.
Find the equation of the straight line upon which the length of the perpendicular from the origin is 2 and the slope of this perpendicular is \[\frac{5}{12}\].
Reduce the following equation to the normal form and find p and α in x − 3 = 0.
Find the point of intersection of the following pairs of lines:
bx + ay = ab and ax + by = ab.
Find the coordinates of the vertices of a triangle, the equations of whose sides are x + y − 4 = 0, 2x − y + 3 = 0 and x − 3y + 2 = 0.
Find the coordinates of the vertices of a triangle, the equations of whose sides are
y (t1 + t2) = 2x + 2a t1t2, y (t2 + t3) = 2x + 2a t2t3 and, y (t3 + t1) = 2x + 2a t1t3.
Find the area of the triangle formed by the line x + y − 6 = 0, x − 3y − 2 = 0 and 5x − 3y + 2 = 0.
Find the equation of the line joining the point (3, 5) to the point of intersection of the lines 4x + y − 1 = 0 and 7x − 3y − 35 = 0.
Prove that the following sets of three lines are concurrent:
15x − 18y + 1 = 0, 12x + 10y − 3 = 0 and 6x + 66y − 11 = 0
Prove that the following sets of three lines are concurrent:
\[\frac{x}{a} + \frac{y}{b} = 1, \frac{x}{b} + \frac{y}{a} = 1\text { and } y = x .\]
If the three lines ax + a2y + 1 = 0, bx + b2y + 1 = 0 and cx + c2y + 1 = 0 are concurrent, show that at least two of three constants a, b, c are equal.
Find the coordinates of the foot of the perpendicular from the point (−1, 3) to the line 3x − 4y − 16 = 0.
Find the values of the parameter a so that the point (a, 2) is an interior point of the triangle formed by the lines x + y − 4 = 0, 3x − 7y − 8 = 0 and 4x − y − 31 = 0.
Write the coordinates of the orthocentre of the triangle formed by the lines x2 − y2 = 0 and x + 6y = 18.
If a ≠ b ≠ c, write the condition for which the equations (b − c) x + (c − a) y + (a − b) = 0 and (b3 − c3) x + (c3 − a3) y + (a3 − b3) = 0 represent the same line.
The number of real values of λ for which the lines x − 2y + 3 = 0, λx + 3y + 1 = 0 and 4x − λy + 2 = 0 are concurrent is
The equations of the sides AB, BC and CA of ∆ ABC are y − x = 2, x + 2y = 1 and 3x + y + 5 = 0 respectively. The equation of the altitude through B is
A (6, 3), B (−3, 5), C (4, −2) and D (x, 3x) are four points. If ∆ DBC : ∆ ABC = 1 : 2, then x is equal to
The figure formed by the lines ax ± by ± c = 0 is
Two vertices of a triangle are (−2, −1) and (3, 2) and third vertex lies on the line x + y = 5. If the area of the triangle is 4 square units, then the third vertex is
The inclination of the line x – y + 3 = 0 with the positive direction of x-axis is ______.
Find the equation of the lines which passes through the point (3, 4) and cuts off intercepts from the coordinate axes such that their sum is 14.
For what values of a and b the intercepts cut off on the coordinate axes by the line ax + by + 8 = 0 are equal in length but opposite in signs to those cut off by the line 2x – 3y + 6 = 0 on the axes.
If the intercept of a line between the coordinate axes is divided by the point (–5, 4) in the ratio 1 : 2, then find the equation of the line.
If the coordinates of the middle point of the portion of a line intercepted between the coordinate axes is (3, 2), then the equation of the line will be ______.
Reduce the following equation into slope-intercept form and find their slopes and the y-intercepts.
x + 7y = 0
Reduce the following equation into normal form. Find their perpendicular distances from the origin and angle between perpendicular and the positive x-axis.
x − y = 4