Advertisements
Advertisements
प्रश्न
Find the area of the triangle formed by the line x + y − 6 = 0, x − 3y − 2 = 0 and 5x − 3y + 2 = 0.
उत्तर
x + y − 6 = 0 ... (1)
x − 3y − 2 = 0 ... (2)
5x − 3y + 2 = 0 ... (3)
In triangle ABC, let equations (1), (2) and (3) represent the sides AB, BC and CA, respectively.
Solving (1) and (2):
x = 5, y = 1
Thus, AB and BC intersect at B (5, 1).
Solving (1) and (3):
x = 2, y = 4
Thus, AB and CA intersect at A (2, 4).
Similarly, solving (2) and (3):
x = −1, y = −1
Thus, BC and CA intersect at C (−1, −1).
∴ Area of triangle ABC = \[\frac{1}{2}\begin{vmatrix}5 & 1 & 1 \\ 2 & 4 & 1 \\ - 1 & - 1 & 1\end{vmatrix} = 12\]
APPEARS IN
संबंधित प्रश्न
Find equation of the line perpendicular to the line x – 7y + 5 = 0 and having x intercept 3.
Find angles between the lines `sqrt3x + y = 1 and x + sqrt3y = 1`.
The line through the points (h, 3) and (4, 1) intersects the line 7x – 9y – 19 = 0. at right angle. Find the value of h.
Prove that the line through the point (x1, y1) and parallel to the line Ax + By + C = 0 is A (x –x1) + B (y – y1) = 0.
Two lines passing through the point (2, 3) intersects each other at an angle of 60°. If slope of one line is 2, find equation of the other line.
Find the coordinates of the foot of perpendicular from the point (–1, 3) to the line 3x – 4y – 16 = 0.
The perpendicular from the origin to the line y = mx + c meets it at the point (–1, 2). Find the values of m and c.
If three lines whose equations are y = m1x + c1, y = m2x + c2 and y = m3x + c3 are concurrent, then show that m1(c2 – c3) + m2 (c3 – c1) + m3 (c1 – c2) = 0.
Find equation of the line which is equidistant from parallel lines 9x + 6y – 7 = 0 and 3x + 2y + 6 = 0.
Find the equation of a line which is equidistant from the lines x = − 2 and x = 6.
Find the equation of the right bisector of the line segment joining the points (3, 4) and (−1, 2).
Find the equation of the straight line on which the length of the perpendicular from the origin is 2 and the perpendicular makes an angle α with x-axis such that sin α = \[\frac{1}{3}\].
Find the equation of the straight line upon which the length of the perpendicular from the origin is 2 and the slope of this perpendicular is \[\frac{5}{12}\].
The length of the perpendicular from the origin to a line is 7 and the line makes an angle of 150° with the positive direction of Y-axis. Find the equation of the line.
Reduce the following equation to the normal form and find p and α in \[x + y + \sqrt{2} = 0\].
Show that the origin is equidistant from the lines 4x + 3y + 10 = 0; 5x − 12y + 26 = 0 and 7x + 24y = 50.
Find the point of intersection of the following pairs of lines:
2x − y + 3 = 0 and x + y − 5 = 0
Find the point of intersection of the following pairs of lines:
\[y = m_1 x + \frac{a}{m_1} \text { and }y = m_2 x + \frac{a}{m_2} .\]
Find the equation of the line joining the point (3, 5) to the point of intersection of the lines 4x + y − 1 = 0 and 7x − 3y − 35 = 0.
Find the orthocentre of the triangle the equations of whose sides are x + y = 1, 2x + 3y = 6 and 4x − y + 4 = 0.
Prove that the following sets of three lines are concurrent:
\[\frac{x}{a} + \frac{y}{b} = 1, \frac{x}{b} + \frac{y}{a} = 1\text { and } y = x .\]
Find the conditions that the straight lines y = m1 x + c1, y = m2 x + c2 and y = m3 x + c3 may meet in a point.
Find the equation of the straight line which has y-intercept equal to \[\frac{4}{3}\] and is perpendicular to 3x − 4y + 11 = 0.
Find the equation of the right bisector of the line segment joining the points (a, b) and (a1, b1).
Find the image of the point (2, 1) with respect to the line mirror x + y − 5 = 0.
If a ≠ b ≠ c, write the condition for which the equations (b − c) x + (c − a) y + (a − b) = 0 and (b3 − c3) x + (c3 − a3) y + (a3 − b3) = 0 represent the same line.
The equations of the sides AB, BC and CA of ∆ ABC are y − x = 2, x + 2y = 1 and 3x + y + 5 = 0 respectively. The equation of the altitude through B is
A (6, 3), B (−3, 5), C (4, −2) and D (x, 3x) are four points. If ∆ DBC : ∆ ABC = 1 : 2, then x is equal to
If the lines x + q = 0, y − 2 = 0 and 3x + 2y + 5 = 0 are concurrent, then the value of q will be
Prove that every straight line has an equation of the form Ax + By + C = 0, where A, B and C are constants.
The inclination of the line x – y + 3 = 0 with the positive direction of x-axis is ______.
Find the equation of the straight line which passes through the point (1, – 2) and cuts off equal intercepts from axes.
For what values of a and b the intercepts cut off on the coordinate axes by the line ax + by + 8 = 0 are equal in length but opposite in signs to those cut off by the line 2x – 3y + 6 = 0 on the axes.
For specifying a straight line, how many geometrical parameters should be known?
The line which cuts off equal intercept from the axes and pass through the point (1, –2) is ______.
Reduce the following equation into slope-intercept form and find their slopes and the y-intercepts.
y = 0
Reduce the following equation into normal form. Find their perpendicular distances from the origin and angle between perpendicular and the positive x-axis.
y − 2 = 0