Advertisements
Advertisements
प्रश्न
If a, b, c are in A.P., prove that the straight lines ax + 2y + 1 = 0, bx + 3y + 1 = 0 and cx + 4y + 1 = 0 are concurrent.
उत्तर
The given lines can be written as follows:
ax + 2y + 1 = 0 ... (1)
bx + 3y + 1 = 0 ... (2)
cx + 4y + 1 = 0 ... (3)
Consider the following determinant.
\[\begin{vmatrix}a & 2 & 1 \\ b & 3 & 1 \\ c & 4 & 1\end{vmatrix}\]
Applying the transformation \[R_1 \to R_1 - R_2 \text { and } R_2 \to R_2 - R_3\],
\[\begin{vmatrix}a & 2 & 1 \\ b & 3 & 1 \\ c & 4 & 1\end{vmatrix} = \begin{vmatrix}a - b & - 1 & 0 \\ b - c & - 1 & 0 \\ c & 4 & 1\end{vmatrix}\]
\[\Rightarrow \begin{vmatrix}a & 2 & 1 \\ b & 3 & 1 \\ c & 4 & 1\end{vmatrix} = \left( - a + b + b - c \right) = 2b - a - c\]
Given:
2b = a + c
Hence, the given lines are concurrent, provided 2b = a + c.
APPEARS IN
संबंधित प्रश्न
Reduce the following equation into normal form. Find their perpendicular distances from the origin and angle between perpendicular and the positive x-axis.
`x – sqrt3y + 8 = 0`
Prove that the line through the point (x1, y1) and parallel to the line Ax + By + C = 0 is A (x –x1) + B (y – y1) = 0.
If p is the length of perpendicular from the origin to the line whose intercepts on the axes are a and b, then show that `1/p^2 = 1/a^2 + 1/b^2`.
If three lines whose equations are y = m1x + c1, y = m2x + c2 and y = m3x + c3 are concurrent, then show that m1(c2 – c3) + m2 (c3 – c1) + m3 (c1 – c2) = 0.
Prove that the product of the lengths of the perpendiculars drawn from the points `(sqrt(a^2 - b^2), 0)` and `(-sqrta^2-b^2, 0)` to the line `x/a cos theta + y/b sin theta = 1` is `b^2`.
Find the equation of the bisector of angle A of the triangle whose vertices are A (4, 3), B (0, 0) and C(2, 3).
Point R (h, k) divides a line segment between the axes in the ratio 1 : 2. Find the equation of the line.
Find the equation of a line for p = 8, α = 300°.
If the straight line through the point P (3, 4) makes an angle π/6 with the x-axis and meets the line 12x + 5y + 10 = 0 at Q, find the length PQ.
Reduce the equation \[\sqrt{3}\] x + y + 2 = 0 to slope-intercept form and find slope and y-intercept;
Reduce the equation \[\sqrt{3}\] x + y + 2 = 0 to the normal form and find p and α.
Reduce the following equation to the normal form and find p and α in \[x + \sqrt{3}y - 4 = 0\] .
Reduce the following equation to the normal form and find p and α in y − 2 = 0.
Put the equation \[\frac{x}{a} + \frac{y}{b} = 1\] to the slope intercept form and find its slope and y-intercept.
Find the coordinates of the vertices of a triangle, the equations of whose sides are x + y − 4 = 0, 2x − y + 3 = 0 and x − 3y + 2 = 0.
Find the area of the triangle formed by the line y = m1 x + c1, y = m2 x + c2 and x = 0.
Find the area of the triangle formed by the line y = 0, x = 2 and x + 2y = 3.
Show that the area of the triangle formed by the lines y = m1 x, y = m2 x and y = c is equal to \[\frac{c^2}{4}\left( \sqrt{33} + \sqrt{11} \right),\] where m1, m2 are the roots of the equation \[x^2 + \left( \sqrt{3} + 2 \right)x + \sqrt{3} - 1 = 0 .\]
If the lines p1 x + q1 y = 1, p2 x + q2 y = 1 and p3 x + q3 y = 1 be concurrent, show that the points (p1, q1), (p2, q2) and (p3, q3) are collinear.
Find the equation of the right bisector of the line segment joining the points (a, b) and (a1, b1).
Find the coordinates of the foot of the perpendicular from the point (−1, 3) to the line 3x − 4y − 16 = 0.
Find the projection of the point (1, 0) on the line joining the points (−1, 2) and (5, 4).
The equations of perpendicular bisectors of the sides AB and AC of a triangle ABC are x − y + 5 = 0 and x + 2y = 0 respectively. If the point A is (1, −2), find the equation of the line BC.
Write the coordinates of the orthocentre of the triangle formed by the lines x2 − y2 = 0 and x + 6y = 18.
Write the coordinates of the orthocentre of the triangle formed by the lines xy = 0 and x + y = 1.
If a ≠ b ≠ c, write the condition for which the equations (b − c) x + (c − a) y + (a − b) = 0 and (b3 − c3) x + (c3 − a3) y + (a3 − b3) = 0 represent the same line.
If the lines ax + 12y + 1 = 0, bx + 13y + 1 = 0 and cx + 14y + 1 = 0 are concurrent, then a, b, c are in
A (6, 3), B (−3, 5), C (4, −2) and D (x, 3x) are four points. If ∆ DBC : ∆ ABC = 1 : 2, then x is equal to
Find the equation of the lines which passes through the point (3, 4) and cuts off intercepts from the coordinate axes such that their sum is 14.
If the line `x/"a" + y/"b"` = 1 passes through the points (2, –3) and (4, –5), then (a, b) is ______.
If the coordinates of the middle point of the portion of a line intercepted between the coordinate axes is (3, 2), then the equation of the line will be ______.
For specifying a straight line, how many geometrical parameters should be known?
A line passes through (2, 2) and is perpendicular to the line 3x + y = 3. Its y-intercept is ______.
Reduce the following equation into slope-intercept form and find their slopes and the y-intercepts.
x + 7y = 0
Reduce the following equation into slope-intercept form and find their slopes and the y-intercepts.
6x + 3y – 5 = 0