मराठी

Reduce the Equation √ 3 X + Y + 2 = 0 to the Normal Form and Find P and α. - Mathematics

Advertisements
Advertisements

प्रश्न

Reduce the equation \[\sqrt{3}\] x + y + 2 = 0 to the normal form and find p and α.

थोडक्यात उत्तर

उत्तर

\[\sqrt{3}\] x + y + 2 = 0

\[\Rightarrow - \sqrt{3}x - y = 2\]

\[ \Rightarrow \frac{- \sqrt{3}x}{\sqrt{\left( - \sqrt{3} \right)^2 + \left( - 1 \right)^2}} - \frac{y}{\sqrt{\left( - \sqrt{3} \right)^2 + \left( - 1 \right)^2}} = \frac{2}{\sqrt{\left( - \sqrt{3} \right)^2 + \left( - 1 \right)^2}} \left[ \text { Dividing both sides by } \sqrt{\left( \text { coefficient of } x \right)^2 + \left( \text { coefficient of }y \right)^2} \right]\]

\[ \Rightarrow \frac{- \sqrt{3}x}{2} - \frac{y}{2} = 1\]

This is the normal form of the given line.
Here,  p = 1,

\[cos\alpha = - \frac{\sqrt{3}}{2}\] and \[sin\alpha = - \frac{1}{2}\]

\[\Rightarrow \alpha = {210}^\circ\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 23: The straight lines - Exercise 23.9 [पृष्ठ ७२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 23 The straight lines
Exercise 23.9 | Q 1.3 | पृष्ठ ७२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find equation of the line parallel to the line 3x – 4y + 2 = 0 and passing through the point (–2, 3).


Prove that the line through the point (x1, y1) and parallel to the line Ax + By + C = 0 is A (x –x1) + B (y – y1) = 0.


The perpendicular from the origin to the line y = mx + c meets it at the point (–1, 2). Find the values of m and c.


Find the equations of the lines, which cut-off intercepts on the axes whose sum and product are 1 and –6, respectively.


In what ratio, the line joining (–1, 1) and (5, 7) is divided by the line x + y = 4?


Prove that the product of the lengths of the perpendiculars drawn from the points `(sqrt(a^2 - b^2), 0)` and `(-sqrta^2-b^2, 0)` to the line `x/a cos theta + y/b sin theta = 1` is `b^2`.


Find the equation of a line that has y-intercept −4 and is parallel to the line joining (2, −5) and (1, 2).


Find the lines through the point (0, 2) making angles \[\frac{\pi}{3} \text { and } \frac{2\pi}{3}\]  with the x-axis. Also, find the lines parallel to them cutting the y-axis at a distance of 2 units below the origin.


Find the equation of the line which intercepts a length 2 on the positive direction of the x-axis and is inclined at an angle of 135° with the positive direction of y-axis.


For what values of a and b the intercepts cut off on the coordinate axes by the line ax + by + 8 = 0 are equal in length but opposite in signs to those cut off by the line 2x − 3y + 6 = 0 on the axes. 


Point R (h, k) divides a line segment between the axes in the ratio 1 : 2. Find the equation of the line.


Find the equation of a line for p = 4, α = 150°.


Reduce the equation \[\sqrt{3}\] x + y + 2 = 0 to slope-intercept form and find slope and y-intercept;


Reduce the following equation to the normal form and find p and α in \[x + y + \sqrt{2} = 0\].


Reduce the lines 3 x − 4 y + 4 = 0 and 2 x + 4 y − 5 = 0 to the normal form and hence find which line is nearer to the origin.


Find the point of intersection of the following pairs of lines:

\[y = m_1 x + \frac{a}{m_1} \text { and }y = m_2 x + \frac{a}{m_2} .\]


Find the area of the triangle formed by the line x + y − 6 = 0, x − 3y − 2 = 0 and 5x − 3y + 2 = 0.


Prove that the lines  \[y = \sqrt{3}x + 1, y = 4 \text { and } y = - \sqrt{3}x + 2\] form an equilateral triangle.


Find the orthocentre of the triangle the equations of whose sides are x + y = 1, 2x + 3y = 6 and 4x − y + 4 = 0.


Prove that the following sets of three lines are concurrent:

 15x − 18y + 1 = 0, 12x + 10y − 3 = 0 and 6x + 66y − 11 = 0


Prove that the following sets of three lines are concurrent:

3x − 5y − 11 = 0, 5x + 3y − 7 = 0 and x + 2y = 0


Prove that the following sets of three lines are concurrent:

\[\frac{x}{a} + \frac{y}{b} = 1, \frac{x}{b} + \frac{y}{a} = 1\text {  and } y = x .\]


Show that the straight lines L1 = (b + c) x + ay + 1 = 0, L2 = (c + a) x + by + 1 = 0 and L3 = (a + b) x + cy + 1 = 0 are concurrent.


If the three lines ax + a2y + 1 = 0, bx + b2y + 1 = 0 and cx + c2y + 1 = 0 are concurrent, show that at least two of three constants a, b, c are equal.


Find the equation of the straight line perpendicular to 2x − 3y = 5 and cutting off an intercept 1 on the positive direction of the x-axis.


Find the equation of the right bisector of the line segment joining the points (a, b) and (a1, b1).


Find the image of the point (2, 1) with respect to the line mirror x + y − 5 = 0.


If the image of the point (2, 1) with respect to the line mirror be (5, 2), find the equation of the mirror.


The figure formed by the lines ax ± by ± c = 0 is


Prove that every straight line has an equation of the form Ax + By + C = 0, where A, B and C are constants.


Find the equation of the straight line which passes through the point (1, – 2) and cuts off equal intercepts from axes.


For what values of a and b the intercepts cut off on the coordinate axes by the line ax + by + 8 = 0 are equal in length but opposite in signs to those cut off by the line 2x – 3y + 6 = 0 on the axes.


If the intercept of a line between the coordinate axes is divided by the point (–5, 4) in the ratio 1 : 2, then find the equation of the line.


For specifying a straight line, how many geometrical parameters should be known?


Reduce the following equation into slope-intercept form and find their slopes and the y-intercepts.

y = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×