मराठी

Prove that the lines y = √ 3 x + 1 , y = 4 and y = − √ 3 x + 2 form an equilateral triangle. - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that the lines  \[y = \sqrt{3}x + 1, y = 4 \text { and } y = - \sqrt{3}x + 2\] form an equilateral triangle.

थोडक्यात उत्तर

उत्तर

The given equations are as follows:

\[y = \sqrt{3}x + 1\]     ... (1)
y = 4                    ... (2)

\[y = - \sqrt{3}x + 2\]  ... (3)

In triangle ABC, let equations (1), (2) and (3) represent the sides AB, BC and CA, respectively.
Solving (1) and (2): 

\[x = \sqrt{3}\]

y = 4

Thus, AB and BC intersect at \[B \left( \sqrt{3}, 4 \right)\].

Solving (1) and (3):

\[x = \frac{1}{2\sqrt{3}}, y = \frac{3}{2}\]

Thus, AB and CA intersect at A \[\left( \frac{1}{2\sqrt{3}}, \frac{3}{2} \right)\].

Similarly, solving (2) and (3):

\[x = - \frac{2}{\sqrt{3}}, y = 4\]
Thus, BC and AC intersect at \[C \left( - \frac{2}{\sqrt{3}}, 4 \right)\].
Now, we have:

\[AB = \sqrt{\left( \frac{1}{2\sqrt{3}} - \sqrt{3} \right)^2 + \left( \frac{3}{2} - 4 \right)^2} = \frac{5}{\sqrt{3}}\]

\[BC = \sqrt{\left( \sqrt{3} + \frac{2}{\sqrt{3}} \right)^2 + \left( 4 - 4 \right)^2} = \frac{5}{\sqrt{3}}\]

\[AC = \sqrt{\left( \frac{1}{2\sqrt{3}} + \frac{2}{\sqrt{3}} \right)^2 + \left( \frac{3}{2} - 4 \right)^2} = \frac{5}{\sqrt{3}}\]

Hence, the given lines form an equilateral triangle.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 23: The straight lines - Exercise 23.1 [पृष्ठ ७८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 23 The straight lines
Exercise 23.1 | Q 5 | पृष्ठ ७८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Reduce the following equation into intercept form and find their intercepts on the axes.

3y + 2 = 0


Reduce the following equation into normal form. Find their perpendicular distances from the origin and angle between perpendicular and the positive x-axis.

`x – sqrt3y + 8 = 0`


Find angles between the lines `sqrt3x + y = 1 and x + sqrt3y = 1`.


The perpendicular from the origin to the line y = mx + c meets it at the point (–1, 2). Find the values of m and c.


If p is the length of perpendicular from the origin to the line whose intercepts on the axes are a and b, then show that `1/p^2 = 1/a^2 + 1/b^2`.


Find the equations of the lines, which cut-off intercepts on the axes whose sum and product are 1 and –6, respectively.


Find equation of the line which is equidistant from parallel lines 9x + 6y – 7 = 0 and 3x + 2y + 6 = 0.


Find the equation of a line that has y-intercept −4 and is parallel to the line joining (2, −5) and (1, 2).


Find the equation of the line which intercepts a length 2 on the positive direction of the x-axis and is inclined at an angle of 135° with the positive direction of y-axis.


Point R (h, k) divides a line segment between the axes in the ratio 1 : 2. Find the equation of the line.


Find the equation of a line for p = 8, α = 225°.


Find the equation of a line for p = 8, α = 300°.


Find the equation of the line on which the length of the perpendicular segment from the origin to the line is 4 and the inclination of the perpendicular segment with the positive direction of x-axis is 30°.


Find the equation of a straight line on which the perpendicular from the origin makes an angle of 30° with x-axis and which forms a triangle of area \[50/\sqrt{3}\] with the axes.


Reduce the following equation to the normal form and find p and α in y − 2 = 0.


Reduce the lines 3 x − 4 y + 4 = 0 and 2 x + 4 y − 5 = 0 to the normal form and hence find which line is nearer to the origin.


Find the point of intersection of the following pairs of lines:

bx + ay = ab and ax + by = ab.


Find the coordinates of the vertices of a triangle, the equations of whose sides are x + y − 4 = 0, 2x − y + 3 = 0 and x − 3y + 2 = 0.


Find the equation of the line joining the point (3, 5) to the point of intersection of the lines 4x + y − 1 = 0 and 7x − 3y − 35 = 0.


Find the orthocentre of the triangle the equations of whose sides are x + y = 1, 2x + 3y = 6 and 4x − y + 4 = 0.


Find the conditions that the straight lines y = m1 x + c1, y = m2 x + c2 and y = m3 x + c3 may meet in a point.


Show that the straight lines L1 = (b + c) x + ay + 1 = 0, L2 = (c + a) x + by + 1 = 0 and L3 = (a + b) x + cy + 1 = 0 are concurrent.


If the three lines ax + a2y + 1 = 0, bx + b2y + 1 = 0 and cx + c2y + 1 = 0 are concurrent, show that at least two of three constants a, b, c are equal.


Find the equation of the right bisector of the line segment joining the points (a, b) and (a1, b1).


If the image of the point (2, 1) with respect to the line mirror be (5, 2), find the equation of the mirror.


Find the projection of the point (1, 0) on the line joining the points (−1, 2) and (5, 4).


Write the coordinates of the orthocentre of the triangle formed by the lines x2 − y2 = 0 and x + 6y = 18.


If a ≠ b ≠ c, write the condition for which the equations (b − c) x + (c − a) y + (a − b) = 0 and (b3 − c3) x + (c3 − a3) y + (a3 − b3) = 0 represent the same line.


The number of real values of λ for which the lines x − 2y + 3 = 0, λx + 3y + 1 = 0 and 4x − λy + 2 = 0 are concurrent is


The centroid of a triangle is (2, 7) and two of its vertices are (4, 8) and (−2, 6). The third vertex is


A point equidistant from the line 4x + 3y + 10 = 0, 5x − 12y + 26 = 0 and 7x+ 24y − 50 = 0 is


Prove that every straight line has an equation of the form Ax + By + C = 0, where A, B and C are constants.


A line passes through P(1, 2) such that its intercept between the axes is bisected at P. The equation of the line is ______.


A line passes through (2, 2) and is perpendicular to the line 3x + y = 3. Its y-intercept is ______.


Reduce the following equation into slope-intercept form and find their slopes and the y-intercepts.

x + 7y = 0


Reduce the following equation into intercept form and find their intercepts on the axes.

 3x + 2y – 12 = 0


Reduce the following equation into normal form. Find their perpendicular distances from the origin and angle between perpendicular and the positive x-axis.

x − y = 4


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×