Advertisements
Advertisements
प्रश्न
Find the equation of a straight line on which the perpendicular from the origin makes an angle of 30° with x-axis and which forms a triangle of area \[50/\sqrt{3}\] with the axes.
उत्तर
Let AB be the given line and OL = p be the perpendicular drawn from the origin on the line.
Here,
\[\alpha = {30}^\circ\]
So, the equation of the line AB is
\[xcos\alpha + ysin\alpha = p \]
\[ \Rightarrow x\cos {30}^\circ + y\sin {30}^\circ = p\]
\[ \Rightarrow \frac{\sqrt{3}x}{2} + \frac{y}{2} = p\]
\[ \Rightarrow \sqrt{3}x + y = 2p . . . (1)\]
Now, in triangles OLA and OLB
\[\cos {30}^\circ = \frac{OL}{OA}\text { and } \cos {60}^\circ = \frac{OL}{OB}\]
\[ \Rightarrow \frac{\sqrt{3}}{2} = \frac{p}{OA} \text { and }\frac{1}{2} = \frac{p}{OB}\]
\[ \Rightarrow OA = \frac{2p}{\sqrt{3}} \text { and} OB = 2p\]
It is given that the area of triangle OAB is \[50/\sqrt{3}\]
\[\therefore \frac{1}{2} \times OA \times OB = \frac{50}{\sqrt{3}}\]
\[ \Rightarrow \frac{1}{2} \times \frac{2p}{\sqrt{3}} \times 2p = \frac{50}{\sqrt{3}}\]
\[ \Rightarrow p^2 = 25\]
\[ \Rightarrow p = 5\]
Substituting the value of p in (1):
\[\sqrt{3}x + y = 10\]
Hence, the equation of the line AB is
\[x + \sqrt{3}y = 10\].
APPEARS IN
संबंधित प्रश्न
Reduce the following equation into intercept form and find their intercepts on the axes.
3y + 2 = 0
Reduce the following equation into normal form. Find their perpendicular distances from the origin and angle between perpendicular and the positive x-axis.
`x – sqrt3y + 8 = 0`
The perpendicular from the origin to the line y = mx + c meets it at the point (–1, 2). Find the values of m and c.
Find the equation of the line passing through the point of intersection of the lines 4x + 7y – 3 = 0 and 2x – 3y + 1 = 0 that has equal intercepts on the axes.
In what ratio, the line joining (–1, 1) and (5, 7) is divided by the line x + y = 4?
Prove that the product of the lengths of the perpendiculars drawn from the points `(sqrt(a^2 - b^2), 0)` and `(-sqrta^2-b^2, 0)` to the line `x/a cos theta + y/b sin theta = 1` is `b^2`.
Find the equation of a line that has y-intercept −4 and is parallel to the line joining (2, −5) and (1, 2).
Find the equation of the right bisector of the line segment joining the points (3, 4) and (−1, 2).
Reduce the equation\[\sqrt{3}\] x + y + 2 = 0 to intercept form and find intercept on the axes.
Put the equation \[\frac{x}{a} + \frac{y}{b} = 1\] to the slope intercept form and find its slope and y-intercept.
Reduce the lines 3 x − 4 y + 4 = 0 and 2 x + 4 y − 5 = 0 to the normal form and hence find which line is nearer to the origin.
Show that the origin is equidistant from the lines 4x + 3y + 10 = 0; 5x − 12y + 26 = 0 and 7x + 24y = 50.
Find the area of the triangle formed by the line y = 0, x = 2 and x + 2y = 3.
Find the area of the triangle formed by the line x + y − 6 = 0, x − 3y − 2 = 0 and 5x − 3y + 2 = 0.
Prove that the lines \[y = \sqrt{3}x + 1, y = 4 \text { and } y = - \sqrt{3}x + 2\] form an equilateral triangle.
Prove that the following sets of three lines are concurrent:
15x − 18y + 1 = 0, 12x + 10y − 3 = 0 and 6x + 66y − 11 = 0
Prove that the following sets of three lines are concurrent:
3x − 5y − 11 = 0, 5x + 3y − 7 = 0 and x + 2y = 0
Find the conditions that the straight lines y = m1 x + c1, y = m2 x + c2 and y = m3 x + c3 may meet in a point.
Show that the straight lines L1 = (b + c) x + ay + 1 = 0, L2 = (c + a) x + by + 1 = 0 and L3 = (a + b) x + cy + 1 = 0 are concurrent.
If the three lines ax + a2y + 1 = 0, bx + b2y + 1 = 0 and cx + c2y + 1 = 0 are concurrent, show that at least two of three constants a, b, c are equal.
If the image of the point (2, 1) with respect to the line mirror be (5, 2), find the equation of the mirror.
Find the projection of the point (1, 0) on the line joining the points (−1, 2) and (5, 4).
Find the values of the parameter a so that the point (a, 2) is an interior point of the triangle formed by the lines x + y − 4 = 0, 3x − 7y − 8 = 0 and 4x − y − 31 = 0.
Determine whether the point (−3, 2) lies inside or outside the triangle whose sides are given by the equations x + y − 4 = 0, 3x − 7y + 8 = 0, 4x − y − 31 = 0 .
Write the coordinates of the orthocentre of the triangle formed by the lines xy = 0 and x + y = 1.
The point which divides the join of (1, 2) and (3, 4) externally in the ratio 1 : 1
A (6, 3), B (−3, 5), C (4, −2) and D (x, 3x) are four points. If ∆ DBC : ∆ ABC = 1 : 2, then x is equal to
A point equidistant from the line 4x + 3y + 10 = 0, 5x − 12y + 26 = 0 and 7x+ 24y − 50 = 0 is
Find the equation of the line where length of the perpendicular segment from the origin to the line is 4 and the inclination of the perpendicular segment with the positive direction of x-axis is 30°.
Prove that every straight line has an equation of the form Ax + By + C = 0, where A, B and C are constants.
The inclination of the line x – y + 3 = 0 with the positive direction of x-axis is ______.
If the intercept of a line between the coordinate axes is divided by the point (–5, 4) in the ratio 1 : 2, then find the equation of the line.
Find the equation of the line which passes through the point (– 4, 3) and the portion of the line intercepted between the axes is divided internally in the ratio 5 : 3 by this point.
A line cutting off intercept – 3 from the y-axis and the tangent at angle to the x-axis is `3/5`, its equation is ______.
If the line `x/"a" + y/"b"` = 1 passes through the points (2, –3) and (4, –5), then (a, b) is ______.
For specifying a straight line, how many geometrical parameters should be known?
Locus of the mid-points of the portion of the line x sin θ + y cos θ = p intercepted between the axes is ______.
Reduce the following equation into slope-intercept form and find their slopes and the y-intercepts.
x + 7y = 0