Advertisements
Advertisements
प्रश्न
Show that the straight lines L1 = (b + c) x + ay + 1 = 0, L2 = (c + a) x + by + 1 = 0 and L3 = (a + b) x + cy + 1 = 0 are concurrent.
उत्तर
The given lines can be written as follows:
(b + c) x + ay + 1 = 0 ... (1)
(c + a) x + by + 1 = 0 ... (2)
(a + b) x + cy + 1 = 0 ... (3)
Consider the following determinant.
\[\begin{vmatrix}b + c & a & 1 \\ c + a & b & 1 \\ a + b & c & 1\end{vmatrix}\]
Applying the transformation \[C_1 \to C_1 + C_2\] \[\begin{vmatrix}b + c & a & 1 \\ c + a & b & 1 \\ a + b & c & 1\end{vmatrix} = \begin{vmatrix}a + b + c & a & 1 \\ c + a + b & b & 1 \\ a + b + c & c & 1\end{vmatrix}\]
\[\Rightarrow\] \[\begin{vmatrix}b + c & a & 1 \\ c + a & b & 1 \\ a + b & c & 1\end{vmatrix}\] = \[\left( a + b + c \right)\begin{vmatrix}1 & a & 1 \\ 1 & b & 1 \\ 1 & c & 1\end{vmatrix}\]
\[\Rightarrow\] \[\begin{vmatrix}b + c & a & 1 \\ c + a & b & 1 \\ a + b & c & 1\end{vmatrix}\] =0
Hence, the given lines are concurrent.
APPEARS IN
संबंधित प्रश्न
Find equation of the line perpendicular to the line x – 7y + 5 = 0 and having x intercept 3.
Two lines passing through the point (2, 3) intersects each other at an angle of 60°. If slope of one line is 2, find equation of the other line.
Find the equation of the right bisector of the line segment joining the points (3, 4) and (–1, 2).
Find the equation of the line passing through the point of intersection of the lines 4x + 7y – 3 = 0 and 2x – 3y + 1 = 0 that has equal intercepts on the axes.
Find the equation of the right bisector of the line segment joining the points A (1, 0) and B (2, 3).
Find the equation of a line for p = 5, α = 60°.
Find the equation of a line for p = 4, α = 150°.
Find the values of θ and p, if the equation x cos θ + y sin θ = p is the normal form of the line \[\sqrt{3}x + y + 2 = 0\].
Find the point of intersection of the following pairs of lines:
2x − y + 3 = 0 and x + y − 5 = 0
Find the point of intersection of the following pairs of lines:
\[y = m_1 x + \frac{a}{m_1} \text { and }y = m_2 x + \frac{a}{m_2} .\]
Find the area of the triangle formed by the line y = m1 x + c1, y = m2 x + c2 and x = 0.
Find the area of the triangle formed by the line x + y − 6 = 0, x − 3y − 2 = 0 and 5x − 3y + 2 = 0.
For what value of λ are the three lines 2x − 5y + 3 = 0, 5x − 9y + λ = 0 and x − 2y + 1 = 0 concurrent?
Find the conditions that the straight lines y = m1 x + c1, y = m2 x + c2 and y = m3 x + c3 may meet in a point.
Find the equation of the straight line perpendicular to 2x − 3y = 5 and cutting off an intercept 1 on the positive direction of the x-axis.
Find the equation of the straight line which has y-intercept equal to \[\frac{4}{3}\] and is perpendicular to 3x − 4y + 11 = 0.
If the image of the point (2, 1) with respect to the line mirror be (5, 2), find the equation of the mirror.
Find the coordinates of the foot of the perpendicular from the point (−1, 3) to the line 3x − 4y − 16 = 0.
The equations of perpendicular bisectors of the sides AB and AC of a triangle ABC are x − y + 5 = 0 and x + 2y = 0 respectively. If the point A is (1, −2), find the equation of the line BC.
Determine whether the point (−3, 2) lies inside or outside the triangle whose sides are given by the equations x + y − 4 = 0, 3x − 7y + 8 = 0, 4x − y − 31 = 0 .
Write the coordinates of the orthocentre of the triangle formed by the lines x2 − y2 = 0 and x + 6y = 18.
Write the area of the figure formed by the lines a |x| + b |y| + c = 0.
The equations of the sides AB, BC and CA of ∆ ABC are y − x = 2, x + 2y = 1 and 3x + y + 5 = 0 respectively. The equation of the altitude through B is
If the lines x + q = 0, y − 2 = 0 and 3x + 2y + 5 = 0 are concurrent, then the value of q will be
A point equidistant from the line 4x + 3y + 10 = 0, 5x − 12y + 26 = 0 and 7x+ 24y − 50 = 0 is
For what values of a and b the intercepts cut off on the coordinate axes by the line ax + by + 8 = 0 are equal in length but opposite in signs to those cut off by the line 2x – 3y + 6 = 0 on the axes.
A line cutting off intercept – 3 from the y-axis and the tangent at angle to the x-axis is `3/5`, its equation is ______.
For specifying a straight line, how many geometrical parameters should be known?
A line passes through (2, 2) and is perpendicular to the line 3x + y = 3. Its y-intercept is ______.
The line which cuts off equal intercept from the axes and pass through the point (1, –2) is ______.
Reduce the following equation into slope-intercept form and find their slopes and the y-intercepts.
x + 7y = 0
Reduce the following equation into slope-intercept form and find their slopes and the y-intercepts.
6x + 3y – 5 = 0
Reduce the following equation into normal form. Find their perpendicular distances from the origin and angle between perpendicular and the positive x-axis.
y − 2 = 0