मराठी

Reduce the following equation into slope-intercept form and find their slopes and the y-intercepts. 6x + 3y – 5 = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Reduce the following equation into slope-intercept form and find their slopes and the y-intercepts.

6x + 3y – 5 = 0

बेरीज

उत्तर

The given equation is 6x + 3y – 5 = 0.

It can be written as

y = `1/3(-6"x" + 5)`

y = `-2"x" + 5/3` ........(1)

This equation is of the form y = mx + c, where m =  −2 and c = `5/3`.

Therefore, equation (1) is in the slope-intercept form, where the slope and the y-intercept are −2 and `5/3` respectively.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Straight Lines - Exercise 10.3 [पृष्ठ २२७]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
पाठ 10 Straight Lines
Exercise 10.3 | Q 1.2 | पृष्ठ २२७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Reduce the following equation into normal form. Find their perpendicular distances from the origin and angle between perpendicular and the positive x-axis.

`x – sqrt3y + 8 = 0`


Find the equation of the right bisector of the line segment joining the points (3, 4) and (–1, 2).


Find the coordinates of the foot of perpendicular from the point (–1, 3) to the line 3x – 4y – 16 = 0.


The perpendicular from the origin to the line y = mx + c meets it at the point (–1, 2). Find the values of m and c.


If p is the length of perpendicular from the origin to the line whose intercepts on the axes are a and b, then show that `1/p^2 = 1/a^2 + 1/b^2`.


If three lines whose equations are y = m1x + c1, y = m2x + c2 and y = m3x + c3 are concurrent, then show that m1(c2 – c3) + m2 (c3 – c1) + m3 (c1 – c2) = 0.


In what ratio, the line joining (–1, 1) and (5, 7) is divided by the line x + y = 4?


A person standing at the junction (crossing) of two straight paths represented by the equations 2x – 3y+ 4 = 0 and 3x + 4y – 5 = 0 wants to reach the path whose equation is 6x – 7y + 8 = 0 in the least time. Find equation of the path that he should follow.


The hypotenuse of a right angled triangle has its ends at the points (1, 3) and (−4, 1). Find the equation of the legs (perpendicular sides) of the triangle that are parallel to the axes.


Find the equation of a line which is equidistant from the lines x = − 2 and x = 6.


Find the lines through the point (0, 2) making angles \[\frac{\pi}{3} \text { and } \frac{2\pi}{3}\]  with the x-axis. Also, find the lines parallel to them cutting the y-axis at a distance of 2 units below the origin.


Find the equation of the line which intercepts a length 2 on the positive direction of the x-axis and is inclined at an angle of 135° with the positive direction of y-axis.


Find the equations of the sides of the triangles the coordinates of whose angular point is respectively (1, 4), (2, −3) and (−1, −2).


For what values of a and b the intercepts cut off on the coordinate axes by the line ax + by + 8 = 0 are equal in length but opposite in signs to those cut off by the line 2x − 3y + 6 = 0 on the axes. 


Find the equation of a line for p = 8, α = 300°.


Find the equation of the line on which the length of the perpendicular segment from the origin to the line is 4 and the inclination of the perpendicular segment with the positive direction of x-axis is 30°.


Find the equation of the straight line upon which the length of the perpendicular from the origin is 2 and the slope of this perpendicular is \[\frac{5}{12}\].


Find the equation of the straight line which makes a triangle of area \[96\sqrt{3}\] with the axes and perpendicular from the origin to it makes an angle of 30° with Y-axis.


Reduce the equation \[\sqrt{3}\] x + y + 2 = 0 to slope-intercept form and find slope and y-intercept;


Reduce the following equation to the normal form and find p and α in \[x - y + 2\sqrt{2} = 0\].


Reduce the following equation to the normal form and find p and α in y − 2 = 0.


Find the equations of the medians of a triangle, the equations of whose sides are:
3x + 2y + 6 = 0, 2x − 5y + 4 = 0 and x − 3y − 6 = 0


Find the equation of the line joining the point (3, 5) to the point of intersection of the lines 4x + y − 1 = 0 and 7x − 3y − 35 = 0.


Find the coordinates of the incentre and centroid of the triangle whose sides have the equations 3x− 4y = 0, 12y + 5x = 0 and y − 15 = 0.


Prove that the following sets of three lines are concurrent:

\[\frac{x}{a} + \frac{y}{b} = 1, \frac{x}{b} + \frac{y}{a} = 1\text {  and } y = x .\]


For what value of λ are the three lines 2x − 5y + 3 = 0, 5x − 9y + λ = 0 and x − 2y + 1 = 0 concurrent?


Show that the straight lines L1 = (b + c) x + ay + 1 = 0, L2 = (c + a) x + by + 1 = 0 and L3 = (a + b) x + cy + 1 = 0 are concurrent.


Find the equation of a line which is perpendicular to the line \[\sqrt{3}x - y + 5 = 0\] and which cuts off an intercept of 4 units with the negative direction of y-axis.


Find the image of the point (2, 1) with respect to the line mirror x + y − 5 = 0.


Find the projection of the point (1, 0) on the line joining the points (−1, 2) and (5, 4).


The equations of the sides AB, BC and CA of ∆ ABC are y − x = 2, x + 2y = 1 and 3x + y + 5 = 0 respectively. The equation of the altitude through B is


The centroid of a triangle is (2, 7) and two of its vertices are (4, 8) and (−2, 6). The third vertex is


If the lines x + q = 0, y − 2 = 0 and 3x + 2y + 5 = 0 are concurrent, then the value of q will be


A point equidistant from the line 4x + 3y + 10 = 0, 5x − 12y + 26 = 0 and 7x+ 24y − 50 = 0 is


Prove that every straight line has an equation of the form Ax + By + C = 0, where A, B and C are constants.


If the intercept of a line between the coordinate axes is divided by the point (–5, 4) in the ratio 1 : 2, then find the equation of the line.


Locus of the mid-points of the portion of the line x sin θ + y cos θ = p intercepted between the axes is ______.


Reduce the following equation into slope-intercept form and find their slopes and the y-intercepts.

x + 7y = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×