मराठी

Find the Equations of the Medians of a Triangle, the Equations of Whose Sides Are: 3x + 2y + 6 = 0, 2x − 5y + 4 = 0 and X − 3y − 6 = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equations of the medians of a triangle, the equations of whose sides are:
3x + 2y + 6 = 0, 2x − 5y + 4 = 0 and x − 3y − 6 = 0

थोडक्यात उत्तर

उत्तर

The given equations are as follows:
3x + 2y + 6 = 0          ... (1)
2x − 5y + 4 = 0          ... (2)
x − 3y − 6 = 0            ... (3)
In triangle ABC, let equations (1), (2) and (3) represent the sides AB, BC and CA, respectively.
Solving (1) and (2):
x = −2, y = 0
Thus, AB and BC intersect at B (−2, 0).
Solving (1) and (3):
x =  \[- \frac{6}{11}\] , y = \[- \frac{24}{11}\] 

Thus, AB and CA intersect at \[A \left( - \frac{6}{11}, - \frac{24}{11} \right)\].

Similarly, solving (2) and (3):
x = −42, y = −16
Thus, BC and CA intersect at C (−42, −16).
Let D, E and F be the midpoints the sides BC, CA and AB, respectively.Then,
Then, we have:

\[D = \left( \frac{- 2 - 42}{2}, \frac{0 - 16}{2} \right) = \left( - 22, - 8 \right)\]

\[E = \left( \frac{- \frac{6}{11} - 42}{2}, \frac{- \frac{24}{11} - 16}{2} \right) = \left( \frac{- 234}{11}, - \frac{100}{11} \right)\]

\[F = \left( \frac{- \frac{6}{11} - 2}{2}, \frac{- \frac{24}{11} + 0}{2} \right) = \left( - \frac{14}{11}, - \frac{12}{11} \right)\]

Now, the equation of median AD is

\[y + \frac{24}{11} = \frac{- 8 + \frac{24}{11}}{- 22 + \frac{6}{11}}\left( x + \frac{6}{11} \right)\]

\[ \Rightarrow 16x - 59y - 120 = 0\]

The equation of median BE is \[y - 0 = \frac{- \frac{100}{11} - 0}{- \frac{234}{11} + 2}\left( x + 2 \right)\]

\[ \Rightarrow 25x - 53y + 50 = 0\]

And, the equation of median CF is

\[y + 16 = \frac{- \frac{12}{11} + 16}{- \frac{14}{11} + 42}\left( x + 42 \right)\]

\[ \Rightarrow 41x - 112y - 70 = 0\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 23: The straight lines - Exercise 23.1 [पृष्ठ ७८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 23 The straight lines
Exercise 23.1 | Q 4 | पृष्ठ ७८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Reduce the following equation into intercept form and find their intercepts on the axes.

3y + 2 = 0


Find angles between the lines `sqrt3x + y = 1 and x + sqrt3y = 1`.


Show that the equation of the line passing through the origin and making an angle θ with the line `y = mx + c " is " y/c = (m+- tan theta)/(1 +- m tan theta)`.


Find equation of the line which is equidistant from parallel lines 9x + 6y – 7 = 0 and 3x + 2y + 6 = 0.


Find the equation of a line making an angle of 150° with the x-axis and cutting off an intercept 2 from y-axis.


Find the equation of a line that has y-intercept −4 and is parallel to the line joining (2, −5) and (1, 2).


Find the equation of the right bisector of the line segment joining the points A (1, 0) and B (2, 3).


Find the equations of the sides of the triangles the coordinates of whose angular point is respectively (1, 4), (2, −3) and (−1, −2).


Find the equation of a line for p = 8, α = 225°.


Find the equation of the straight line upon which the length of the perpendicular from the origin is 2 and the slope of this perpendicular is \[\frac{5}{12}\].


The length of the perpendicular from the origin to a line is 7 and the line makes an angle of 150° with the positive direction of Y-axis. Find the equation of the line.


Find the value of θ and p, if the equation x cos θ + y sin θ = p is the normal form of the line \[\sqrt{3}x + y + 2 = 0\].


Find the equation of the straight line which makes a triangle of area \[96\sqrt{3}\] with the axes and perpendicular from the origin to it makes an angle of 30° with Y-axis.


Put the equation \[\frac{x}{a} + \frac{y}{b} = 1\] to the slope intercept form and find its slope and y-intercept.


Find the point of intersection of the following pairs of lines:

\[y = m_1 x + \frac{a}{m_1} \text { and }y = m_2 x + \frac{a}{m_2} .\]


Find the equation of the line joining the point (3, 5) to the point of intersection of the lines 4x + y − 1 = 0 and 7x − 3y − 35 = 0.


Show that the straight lines L1 = (b + c) x + ay + 1 = 0, L2 = (c + a) x + by + 1 = 0 and L3 = (a + b) x + cy + 1 = 0 are concurrent.


If the three lines ax + a2y + 1 = 0, bx + b2y + 1 = 0 and cx + c2y + 1 = 0 are concurrent, show that at least two of three constants a, b, c are equal.


If a, b, c are in A.P., prove that the straight lines ax + 2y + 1 = 0, bx + 3y + 1 = 0 and cx + 4y + 1 = 0 are concurrent.


Find the equation of the perpendicular bisector of the line joining the points (1, 3) and (3, 1).


Find the equation of a line which is perpendicular to the line \[\sqrt{3}x - y + 5 = 0\] and which cuts off an intercept of 4 units with the negative direction of y-axis.


Find the equation of the right bisector of the line segment joining the points (a, b) and (a1, b1).


Find the coordinates of the foot of the perpendicular from the point (−1, 3) to the line 3x − 4y − 16 = 0.


Write the area of the figure formed by the lines a |x| + b |y| + c = 0.

 

The point which divides the join of (1, 2) and (3, 4) externally in the ratio 1 : 1


A (6, 3), B (−3, 5), C (4, −2) and D (x, 3x) are four points. If ∆ DBC : ∆ ABC = 1 : 2, then x is equal to


The figure formed by the lines ax ± by ± c = 0 is


The centroid of a triangle is (2, 7) and two of its vertices are (4, 8) and (−2, 6). The third vertex is


If the lines x + q = 0, y − 2 = 0 and 3x + 2y + 5 = 0 are concurrent, then the value of q will be


For what values of a and b the intercepts cut off on the coordinate axes by the line ax + by + 8 = 0 are equal in length but opposite in signs to those cut off by the line 2x – 3y + 6 = 0 on the axes.


If the intercept of a line between the coordinate axes is divided by the point (–5, 4) in the ratio 1 : 2, then find the equation of the line.


Find the equation of the line which passes through the point (– 4, 3) and the portion of the line intercepted between the axes is divided internally in the ratio 5 : 3 by this point.


If the line `x/"a" + y/"b"` = 1 passes through the points (2, –3) and (4, –5), then (a, b) is ______.


If the coordinates of the middle point of the portion of a line intercepted between the coordinate axes is (3, 2), then the equation of the line will be ______.


Reduce the following equation into slope-intercept form and find their slopes and the y-intercepts.

y = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×