Advertisements
Advertisements
प्रश्न
Find the value of θ and p, if the equation x cos θ + y sin θ = p is the normal form of the line \[\sqrt{3}x + y + 2 = 0\].
उत्तर
The normal form of a line is
x cos θ + y sin θ = p ... (1)
Let us try to write down the equation
\[\sqrt{3}x + y + 2 = 0\] in its normal form.
\[\text { Now, } \sqrt{3}x + y + 2 = 0\]
\[ \Rightarrow \sqrt{3}x + y = - 2\]
\[ \Rightarrow - \frac{\sqrt{3}}{2}x - \frac{y}{2} = 1 \left[\text { Dividing both sides by } - 2 \right]\]
\[ \Rightarrow \left( - \frac{\sqrt{3}}{2} \right)x + \left( - \frac{1}{2} \right)y = 1 . . . (2)\]
Comparing equations (1) and (2) we get,
\[\cos\theta = - \frac{\sqrt{3}}{2}, \text { and} p = 1\]
\[ \Rightarrow \theta = {210}^\circ = \frac{7\pi}{6}\text { and } p = 1\]
APPEARS IN
संबंधित प्रश्न
Find the coordinates of the foot of perpendicular from the point (–1, 3) to the line 3x – 4y – 16 = 0.
If p and q are the lengths of perpendiculars from the origin to the lines x cos θ – y sin θ = k cos 2θ and xsec θ+ y cosec θ = k, respectively, prove that p2 + 4q2 = k2.
In the triangle ABC with vertices A (2, 3), B (4, –1) and C (1, 2), find the equation and length of altitude from the vertex A.
If three lines whose equations are y = m1x + c1, y = m2x + c2 and y = m3x + c3 are concurrent, then show that m1(c2 – c3) + m2 (c3 – c1) + m3 (c1 – c2) = 0.
Prove that the product of the lengths of the perpendiculars drawn from the points `(sqrt(a^2 - b^2), 0)` and `(-sqrta^2-b^2, 0)` to the line `x/a cos theta + y/b sin theta = 1` is `b^2`.
The hypotenuse of a right angled triangle has its ends at the points (1, 3) and (−4, 1). Find the equation of the legs (perpendicular sides) of the triangle that are parallel to the axes.
Find the equation of a line which makes an angle of tan−1 (3) with the x-axis and cuts off an intercept of 4 units on negative direction of y-axis.
Find the lines through the point (0, 2) making angles \[\frac{\pi}{3} \text { and } \frac{2\pi}{3}\] with the x-axis. Also, find the lines parallel to them cutting the y-axis at a distance of 2 units below the origin.
Find the equation of the line which intercepts a length 2 on the positive direction of the x-axis and is inclined at an angle of 135° with the positive direction of y-axis.
Find the equations of the sides of the triangles the coordinates of whose angular point is respectively (1, 4), (2, −3) and (−1, −2).
If the straight line through the point P (3, 4) makes an angle π/6 with the x-axis and meets the line 12x + 5y + 10 = 0 at Q, find the length PQ.
Reduce the equation\[\sqrt{3}\] x + y + 2 = 0 to intercept form and find intercept on the axes.
Reduce the equation \[\sqrt{3}\] x + y + 2 = 0 to the normal form and find p and α.
Reduce the following equation to the normal form and find p and α in \[x + y + \sqrt{2} = 0\].
Show that the origin is equidistant from the lines 4x + 3y + 10 = 0; 5x − 12y + 26 = 0 and 7x + 24y = 50.
Find the area of the triangle formed by the line x + y − 6 = 0, x − 3y − 2 = 0 and 5x − 3y + 2 = 0.
Find the equations of the medians of a triangle, the equations of whose sides are:
3x + 2y + 6 = 0, 2x − 5y + 4 = 0 and x − 3y − 6 = 0
Find the orthocentre of the triangle the equations of whose sides are x + y = 1, 2x + 3y = 6 and 4x − y + 4 = 0.
Prove that the following sets of three lines are concurrent:
15x − 18y + 1 = 0, 12x + 10y − 3 = 0 and 6x + 66y − 11 = 0
Find the conditions that the straight lines y = m1 x + c1, y = m2 x + c2 and y = m3 x + c3 may meet in a point.
Find the equation of the straight line perpendicular to 2x − 3y = 5 and cutting off an intercept 1 on the positive direction of the x-axis.
Find the equation of the straight line which has y-intercept equal to \[\frac{4}{3}\] and is perpendicular to 3x − 4y + 11 = 0.
Find the image of the point (2, 1) with respect to the line mirror x + y − 5 = 0.
If the image of the point (2, 1) with respect to the line mirror be (5, 2), find the equation of the mirror.
Find the values of α so that the point P (α2, α) lies inside or on the triangle formed by the lines x − 5y+ 6 = 0, x − 3y + 2 = 0 and x − 2y − 3 = 0.
Write the coordinates of the orthocentre of the triangle formed by the lines x2 − y2 = 0 and x + 6y = 18.
The number of real values of λ for which the lines x − 2y + 3 = 0, λx + 3y + 1 = 0 and 4x − λy + 2 = 0 are concurrent is
A (6, 3), B (−3, 5), C (4, −2) and D (x, 3x) are four points. If ∆ DBC : ∆ ABC = 1 : 2, then x is equal to
The centroid of a triangle is (2, 7) and two of its vertices are (4, 8) and (−2, 6). The third vertex is
For what values of a and b the intercepts cut off on the coordinate axes by the line ax + by + 8 = 0 are equal in length but opposite in signs to those cut off by the line 2x – 3y + 6 = 0 on the axes.
If the line `x/"a" + y/"b"` = 1 passes through the points (2, –3) and (4, –5), then (a, b) is ______.
A line passes through (2, 2) and is perpendicular to the line 3x + y = 3. Its y-intercept is ______.
Locus of the mid-points of the portion of the line x sin θ + y cos θ = p intercepted between the axes is ______.
Reduce the following equation into intercept form and find their intercepts on the axes.
4x – 3y = 6