मराठी

Find the Equation of a Line Which Makes an Angle of Tan−1 (3) with the X-axis and Cuts off an Intercept of 4 Units on Negative Direction of Y-axis. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equation of a line which makes an angle of tan−1 (3) with the x-axis and cuts off an intercept of 4 units on negative direction of y-axis.

थोडक्यात उत्तर

उत्तर

Let m be the slope of the required line.

\[\therefore m = \tan\theta = \tan\left\{ \tan^{- 1} \left( 3 \right) \right\} = 3\]

\[ c = y - \text { intercept } = - 4\]

Substituting the values of m and c in y = mx + c, we get y = 3x -4

Hence, the equation of the required line is y = 3x - 4

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 23: The straight lines - Exercise 23.3 [पृष्ठ २१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 23 The straight lines
Exercise 23.3 | Q 4 | पृष्ठ २१

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Reduce the following equation into normal form. Find their perpendicular distances from the origin and angle between perpendicular and the positive x-axis.

`x – sqrt3y + 8 = 0`


The line through the points (h, 3) and (4, 1) intersects the line 7x – 9y – 19 = 0. at right angle. Find the value of h.


Find the equation of the right bisector of the line segment joining the points (3, 4) and (–1, 2).


In the triangle ABC with vertices A (2, 3), B (4, –1) and C (1, 2), find the equation and length of altitude from the vertex A.


Find the equations of the lines, which cut-off intercepts on the axes whose sum and product are 1 and –6, respectively.


If three lines whose equations are y = m1x + c1, y = m2x + c2 and y = m3x + c3 are concurrent, then show that m1(c2 – c3) + m2 (c3 – c1) + m3 (c1 – c2) = 0.


Show that the equation of the line passing through the origin and making an angle θ with the line `y = mx + c " is " y/c = (m+- tan theta)/(1 +- m tan theta)`.


In what ratio, the line joining (–1, 1) and (5, 7) is divided by the line x + y = 4?


Find the equation of a line which is equidistant from the lines x = − 2 and x = 6.


Find the equation of the right bisector of the line segment joining the points (3, 4) and (−1, 2).


Find the equations of the sides of the triangles the coordinates of whose angular point is respectively (1, 4), (2, −3) and (−1, −2).


For what values of a and b the intercepts cut off on the coordinate axes by the line ax + by + 8 = 0 are equal in length but opposite in signs to those cut off by the line 2x − 3y + 6 = 0 on the axes. 


Find the equation of a line for  p = 5, α = 60°.


Find the equation of a line for p = 8, α = 225°.


The length of the perpendicular from the origin to a line is 7 and the line makes an angle of 150° with the positive direction of Y-axis. Find the equation of the line.


Reduce the following equation to the normal form and find p and α in \[x + y + \sqrt{2} = 0\].


Find the point of intersection of the following pairs of lines:

bx + ay = ab and ax + by = ab.


Find the point of intersection of the following pairs of lines:

\[y = m_1 x + \frac{a}{m_1} \text { and }y = m_2 x + \frac{a}{m_2} .\]


Find the coordinates of the vertices of a triangle, the equations of whose sides are x + y − 4 = 0, 2x − y + 3 = 0 and x − 3y + 2 = 0.


Show that the area of the triangle formed by the lines y = m1 x, y = m2 x and y = c is equal to \[\frac{c^2}{4}\left( \sqrt{33} + \sqrt{11} \right),\] where m1, m2 are the roots of the equation \[x^2 + \left( \sqrt{3} + 2 \right)x + \sqrt{3} - 1 = 0 .\]


Find the orthocentre of the triangle the equations of whose sides are x + y = 1, 2x + 3y = 6 and 4x − y + 4 = 0.


Prove that the following sets of three lines are concurrent:

\[\frac{x}{a} + \frac{y}{b} = 1, \frac{x}{b} + \frac{y}{a} = 1\text {  and } y = x .\]


If the lines p1 x + q1 y = 1, p2 x + q2 y = 1 and p3 x + q3 y = 1 be concurrent, show that the points (p1, q1), (p2, q2) and (p3, q3) are collinear.


Find the equation of the perpendicular bisector of the line joining the points (1, 3) and (3, 1).


Find the image of the point (2, 1) with respect to the line mirror x + y − 5 = 0.


Find the projection of the point (1, 0) on the line joining the points (−1, 2) and (5, 4).


Write the coordinates of the orthocentre of the triangle formed by the lines xy = 0 and x + y = 1.


Write the area of the figure formed by the lines a |x| + b |y| + c = 0.

 

The figure formed by the lines ax ± by ± c = 0 is


Two vertices of a triangle are (−2, −1) and (3, 2) and third vertex lies on the line x + y = 5. If the area of the triangle is 4 square units, then the third vertex is


Find the equation of a line which passes through the point (2, 3) and makes an angle of 30° with the positive direction of x-axis.


A line cutting off intercept – 3 from the y-axis and the tangent at angle to the x-axis is `3/5`, its equation is ______.


Reduce the following equation into slope-intercept form and find their slopes and the y-intercepts.

6x + 3y – 5 = 0


Reduce the following equation into intercept form and find their intercepts on the axes.

4x – 3y = 6


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×