मराठी

Find the Point of Intersection of the Following Pairs of Lines: Bx + Ay = Ab And Ax + By = Ab. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the point of intersection of the following pairs of lines:

bx + ay = ab and ax + by = ab.

थोडक्यात उत्तर

उत्तर

The equations of the lines are as follows:
bx + ay = ab   

\[\Rightarrow\] bx + ay − ab = 0         ... (1)
ax + by = ab  

\[\Rightarrow\] ax + by − ab = 0          ... (2)
Solving (1) and (2) using cross-multiplication method:   

\[\frac{x}{- a^2 b + a b^2} = \frac{y}{- a^2 b + a b^2} = \frac{1}{b^2 - a^2}\]

\[ \Rightarrow \frac{x}{ab\left( b - a \right)} = \frac{y}{ab\left( b - a \right)} = \frac{1}{\left( a + b \right)\left( b - a \right)}\]

\[ \Rightarrow x = \frac{ab}{a + b} \text { and } y = \frac{ab}{a + b}\]

Hence, the point of intersection is \[\left( \frac{ab}{a + b}, \frac{ab}{a + b} \right)\].

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 23: The straight lines - Exercise 23.1 [पृष्ठ ७७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 23 The straight lines
Exercise 23.1 | Q 1.2 | पृष्ठ ७७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Reduce the following equation into intercept form and find their intercepts on the axes.

3y + 2 = 0


Find equation of the line parallel to the line 3x – 4y + 2 = 0 and passing through the point (–2, 3).


The line through the points (h, 3) and (4, 1) intersects the line 7x – 9y – 19 = 0. at right angle. Find the value of h.


In the triangle ABC with vertices A (2, 3), B (4, –1) and C (1, 2), find the equation and length of altitude from the vertex A.


If three lines whose equations are y = m1x + c1, y = m2x + c2 and y = m3x + c3 are concurrent, then show that m1(c2 – c3) + m2 (c3 – c1) + m3 (c1 – c2) = 0.


Find the equation of the line passing through the point of intersection of the lines 4x + 7y – 3 = 0 and 2x – 3y + 1 = 0 that has equal intercepts on the axes.


Prove that the product of the lengths of the perpendiculars drawn from the points `(sqrt(a^2 - b^2), 0)` and `(-sqrta^2-b^2, 0)` to the line `x/a cos theta + y/b sin theta = 1` is `b^2`.


A person standing at the junction (crossing) of two straight paths represented by the equations 2x – 3y+ 4 = 0 and 3x + 4y – 5 = 0 wants to reach the path whose equation is 6x – 7y + 8 = 0 in the least time. Find equation of the path that he should follow.


Find the equation of the line which intercepts a length 2 on the positive direction of the x-axis and is inclined at an angle of 135° with the positive direction of y-axis.


Find the equation of the right bisector of the line segment joining the points (3, 4) and (−1, 2).


Find the equation of the bisector of angle A of the triangle whose vertices are A (4, 3), B (0, 0) and C(2, 3).


Find the equation of a line for p = 8, α = 225°.


Find the value of θ and p, if the equation x cos θ + y sin θ = p is the normal form of the line \[\sqrt{3}x + y + 2 = 0\].


Find the equation of the straight line which makes a triangle of area \[96\sqrt{3}\] with the axes and perpendicular from the origin to it makes an angle of 30° with Y-axis.


Reduce the equation\[\sqrt{3}\] x + y + 2 = 0 to intercept form and find intercept on the axes.


Reduce the following equation to the normal form and find p and α in \[x + \sqrt{3}y - 4 = 0\] .


Reduce the following equation to the normal form and find p and α in y − 2 = 0.


Find the values of θ and p, if the equation x cos θ + y sin θ = p is the normal form of the line \[\sqrt{3}x + y + 2 = 0\].


Find the point of intersection of the following pairs of lines:

2x − y + 3 = 0 and x + y − 5 = 0


Find the area of the triangle formed by the line y = m1 x + c1, y = m2 x + c2 and x = 0.


Find the equations of the medians of a triangle, the equations of whose sides are:
3x + 2y + 6 = 0, 2x − 5y + 4 = 0 and x − 3y − 6 = 0


Find the equation of the line joining the point (3, 5) to the point of intersection of the lines 4x + y − 1 = 0 and 7x − 3y − 35 = 0.


Find the conditions that the straight lines y = m1 x + c1, y = m2 x + c2 and y = m3 x + c3 may meet in a point.


Find the equation of a line which is perpendicular to the line \[\sqrt{3}x - y + 5 = 0\] and which cuts off an intercept of 4 units with the negative direction of y-axis.


Find the image of the point (2, 1) with respect to the line mirror x + y − 5 = 0.


If the image of the point (2, 1) with respect to the line mirror be (5, 2), find the equation of the mirror.


Find the projection of the point (1, 0) on the line joining the points (−1, 2) and (5, 4).


The equations of perpendicular bisectors of the sides AB and AC of a triangle ABC are x − y + 5 = 0 and x + 2y = 0 respectively. If the point A is (1, −2), find the equation of the line BC.


Find the values of the parameter a so that the point (a, 2) is an interior point of the triangle formed by the lines x + y − 4 = 0, 3x − 7y − 8 = 0 and 4x − y − 31 = 0.


Write the area of the figure formed by the lines a |x| + b |y| + c = 0.

 

The point which divides the join of (1, 2) and (3, 4) externally in the ratio 1 : 1


A (6, 3), B (−3, 5), C (4, −2) and D (x, 3x) are four points. If ∆ DBC : ∆ ABC = 1 : 2, then x is equal to


Two vertices of a triangle are (−2, −1) and (3, 2) and third vertex lies on the line x + y = 5. If the area of the triangle is 4 square units, then the third vertex is


The centroid of a triangle is (2, 7) and two of its vertices are (4, 8) and (−2, 6). The third vertex is


Find the equation of the line where length of the perpendicular segment from the origin to the line is 4 and the inclination of the perpendicular segment with the positive direction of x-axis is 30°.


The inclination of the line x – y + 3 = 0 with the positive direction of x-axis is ______.


Find the equation of the lines which passes through the point (3, 4) and cuts off intercepts from the coordinate axes such that their sum is 14.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×