Advertisements
Advertisements
प्रश्न
If three lines whose equations are y = m1x + c1, y = m2x + c2 and y = m3x + c3 are concurrent, then show that m1(c2 – c3) + m2 (c3 – c1) + m3 (c1 – c2) = 0.
उत्तर
The equations of the given lines are
y = m1x + c1 …(1)
y = m2x + c2 …(2)
y = m3x + c3 …(3)
On subtracting equation (1) from (2), we obtain
0 = (m2 − m1)x + (c2 − c1)
= (m1 − m2)x = c2 − c1
= `x = (c_2 - c_1)/(m_1 - m_2)`
On substituting this value of x in (1), we obtain
`y = m_1 ((c_2 - c_1)/(m_1 - m_2)) + c_1`
`y = ((m_1c_2 - m_1c_1)/(m_1 - m_2)) + c_1`
`y = (m_1c_2 - m_1c_1 + m_1c_1 - m_2c_1)/(m_1 - m_2)`
`y = (m_1c_2 - m_2c_1)/(m_1 - m_2)`
∴ `((c_2 - c_1)/(m_1 - m_2), (m_1c_2 - m_2c_1)/(m_1 - m_2))` is the point of intersection of lines (1) and (2).
It is given that lines (1), (2), and (3) are concurrent. Hence, the point of intersection of lines (1) and (2) will also satisfy equation (3).
= `(m_1c_2 - m_2c_1)/(m_1 - m_2) = m_3 ((c_2 - c_1)/(m_1 - m_1)) + c_3`
= `(m_1c_2 - m_2c_1)/(m_1 - m_2) = (m_3c_2 - m_3c_1 + c_3m_1 - c_3m_2)/(m_1 - m_2)`
= m1c2 - m2c1 - m3c2 + m3c1 - c3m1 + c3m2 = 0
= m1 (c2 - c3) + m2 (c3 - c1) + m3 (c1 - c2) = 0
Hence, m1 (c2 - c3) + m2 (c3 - c1) + m3 (c1 - c2) = 0
APPEARS IN
संबंधित प्रश्न
Find equation of the line parallel to the line 3x – 4y + 2 = 0 and passing through the point (–2, 3).
The perpendicular from the origin to the line y = mx + c meets it at the point (–1, 2). Find the values of m and c.
Find the equations of the lines, which cut-off intercepts on the axes whose sum and product are 1 and –6, respectively.
A person standing at the junction (crossing) of two straight paths represented by the equations 2x – 3y+ 4 = 0 and 3x + 4y – 5 = 0 wants to reach the path whose equation is 6x – 7y + 8 = 0 in the least time. Find equation of the path that he should follow.
Find the equation of a line which makes an angle of tan−1 (3) with the x-axis and cuts off an intercept of 4 units on negative direction of y-axis.
Find the equation of a line that has y-intercept −4 and is parallel to the line joining (2, −5) and (1, 2).
Find the equations of the diagonals of the square formed by the lines x = 0, y = 0, x = 1 and y =1.
Find the equation of the line on which the length of the perpendicular segment from the origin to the line is 4 and the inclination of the perpendicular segment with the positive direction of x-axis is 30°.
Find the equation of the straight line on which the length of the perpendicular from the origin is 2 and the perpendicular makes an angle α with x-axis such that sin α = \[\frac{1}{3}\].
Reduce the equation\[\sqrt{3}\] x + y + 2 = 0 to intercept form and find intercept on the axes.
Reduce the following equation to the normal form and find p and α in \[x - y + 2\sqrt{2} = 0\].
Find the values of θ and p, if the equation x cos θ + y sin θ = p is the normal form of the line \[\sqrt{3}x + y + 2 = 0\].
Reduce the equation 3x − 2y + 6 = 0 to the intercept form and find the x and y intercepts.
Find the point of intersection of the following pairs of lines:
2x − y + 3 = 0 and x + y − 5 = 0
Find the point of intersection of the following pairs of lines:
\[y = m_1 x + \frac{a}{m_1} \text { and }y = m_2 x + \frac{a}{m_2} .\]
Find the coordinates of the vertices of a triangle, the equations of whose sides are
y (t1 + t2) = 2x + 2a t1t2, y (t2 + t3) = 2x + 2a t2t3 and, y (t3 + t1) = 2x + 2a t1t3.
Find the area of the triangle formed by the line y = m1 x + c1, y = m2 x + c2 and x = 0.
Find the area of the triangle formed by the line y = 0, x = 2 and x + 2y = 3.
Find the equations of the medians of a triangle, the equations of whose sides are:
3x + 2y + 6 = 0, 2x − 5y + 4 = 0 and x − 3y − 6 = 0
Find the coordinates of the incentre and centroid of the triangle whose sides have the equations 3x− 4y = 0, 12y + 5x = 0 and y − 15 = 0.
Prove that the following sets of three lines are concurrent:
\[\frac{x}{a} + \frac{y}{b} = 1, \frac{x}{b} + \frac{y}{a} = 1\text { and } y = x .\]
If the lines p1 x + q1 y = 1, p2 x + q2 y = 1 and p3 x + q3 y = 1 be concurrent, show that the points (p1, q1), (p2, q2) and (p3, q3) are collinear.
If the three lines ax + a2y + 1 = 0, bx + b2y + 1 = 0 and cx + c2y + 1 = 0 are concurrent, show that at least two of three constants a, b, c are equal.
Find the equation of a line which is perpendicular to the line \[\sqrt{3}x - y + 5 = 0\] and which cuts off an intercept of 4 units with the negative direction of y-axis.
Find the image of the point (2, 1) with respect to the line mirror x + y − 5 = 0.
Write the coordinates of the orthocentre of the triangle formed by the lines x2 − y2 = 0 and x + 6y = 18.
The equations of the sides AB, BC and CA of ∆ ABC are y − x = 2, x + 2y = 1 and 3x + y + 5 = 0 respectively. The equation of the altitude through B is
A point equidistant from the line 4x + 3y + 10 = 0, 5x − 12y + 26 = 0 and 7x+ 24y − 50 = 0 is
Find the equation of a line which passes through the point (2, 3) and makes an angle of 30° with the positive direction of x-axis.
Find the equation of the line where length of the perpendicular segment from the origin to the line is 4 and the inclination of the perpendicular segment with the positive direction of x-axis is 30°.
A line passes through P(1, 2) such that its intercept between the axes is bisected at P. The equation of the line is ______.
For specifying a straight line, how many geometrical parameters should be known?
Reduce the following equation into slope-intercept form and find their slopes and the y-intercepts.
x + 7y = 0
Reduce the following equation into slope-intercept form and find their slopes and the y-intercepts.
6x + 3y – 5 = 0
Reduce the following equation into normal form. Find their perpendicular distances from the origin and angle between perpendicular and the positive x-axis.
y − 2 = 0