मराठी

If the Three Lines Ax + A2y + 1 = 0, Bx + B2y + 1 = 0 and Cx + C2y + 1 = 0 Are Concurrent, Show that at Least Two of Three Constants A, B, C Are Equal. - Mathematics

Advertisements
Advertisements

प्रश्न

If the three lines ax + a2y + 1 = 0, bx + b2y + 1 = 0 and cx + c2y + 1 = 0 are concurrent, show that at least two of three constants a, b, c are equal.

थोडक्यात उत्तर

उत्तर

The given lines can be written as follows:
ax + a2y + 1 = 0           ... (1)
bx + b2y + 1 = 0           ... (2)
cx + c2y + 1 = 0           ... (3)
The given lines are concurrent. 

\[\therefore \begin{vmatrix}a & a^2 & 1 \\ b & b^2 & 1 \\ c & c^2 & 1\end{vmatrix} = 0\]

Applying the transformation \[R_1 \to R_1 - R_2\text{  and } R_2 \to R_2 - R_3\]:

\[\begin{vmatrix}a - b & a^2 - b^2 & 0 \\ b - c & b^2 - c^2 & 0 \\ c & c^2 & 1\end{vmatrix} = 0\]

\[ \Rightarrow \left( a - b \right)\left( b - c \right)\begin{vmatrix}1 & a + b & 0 \\ 1 & b + c & 0 \\ c & c^2 & 1\end{vmatrix} = 0\]

\[ \Rightarrow \left( a - b \right)\left( b - c \right)\left( c - a \right) = 0\]

\[\Rightarrow a - b = 0 \text { or b - c = 0 or c - a} = 0\]

\[ \Rightarrow \text { a = b or b = c or c } = a\]

Therefore, atleast two of the constants a,b,c are equal .

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 23: The straight lines - Exercise 23.11 [पृष्ठ ८३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 23 The straight lines
Exercise 23.11 | Q 6 | पृष्ठ ८३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Reduce the following equation into normal form. Find their perpendicular distances from the origin and angle between perpendicular and the positive x-axis.

`x – sqrt3y + 8 = 0`


Find equation of the line parallel to the line 3x – 4y + 2 = 0 and passing through the point (–2, 3).


If p and q are the lengths of perpendiculars from the origin to the lines x cos θ – y sin θ = k cos 2θ and xsec θ+ y cosec θ = k, respectively, prove that p2 + 4q2 = k2.


In what ratio, the line joining (–1, 1) and (5, 7) is divided by the line x + y = 4?


Find the equation of a line which is equidistant from the lines x = − 2 and x = 6.


Find the equation of a line which makes an angle of tan−1 (3) with the x-axis and cuts off an intercept of 4 units on negative direction of y-axis.


Find the equation of a line that has y-intercept −4 and is parallel to the line joining (2, −5) and (1, 2).


Find the equation of the right bisector of the line segment joining the points A (1, 0) and B (2, 3).


Find the equations of the diagonals of the square formed by the lines x = 0, y = 0, x = 1 and y =1. 


For what values of a and b the intercepts cut off on the coordinate axes by the line ax + by + 8 = 0 are equal in length but opposite in signs to those cut off by the line 2x − 3y + 6 = 0 on the axes. 


Find the equation of a line for p = 8, α = 300°.


Put the equation \[\frac{x}{a} + \frac{y}{b} = 1\] to the slope intercept form and find its slope and y-intercept.


Reduce the lines 3 x − 4 y + 4 = 0 and 2 x + 4 y − 5 = 0 to the normal form and hence find which line is nearer to the origin.


Show that the origin is equidistant from the lines 4x + 3y + 10 = 0; 5x − 12y + 26 = 0 and 7x + 24y = 50.


Find the coordinates of the vertices of a triangle, the equations of whose sides are

y (t1 + t2) = 2x + 2a t1t2, y (t2 + t3) = 2x + 2a t2t3 and, y (t3 + t1) = 2x + 2a t1t3.


Find the equations of the medians of a triangle, the equations of whose sides are:
3x + 2y + 6 = 0, 2x − 5y + 4 = 0 and x − 3y − 6 = 0


Prove that the lines  \[y = \sqrt{3}x + 1, y = 4 \text { and } y = - \sqrt{3}x + 2\] form an equilateral triangle.


Prove that the following sets of three lines are concurrent:

 15x − 18y + 1 = 0, 12x + 10y − 3 = 0 and 6x + 66y − 11 = 0


For what value of λ are the three lines 2x − 5y + 3 = 0, 5x − 9y + λ = 0 and x − 2y + 1 = 0 concurrent?


If a, b, c are in A.P., prove that the straight lines ax + 2y + 1 = 0, bx + 3y + 1 = 0 and cx + 4y + 1 = 0 are concurrent.


Find the equation of the straight line which has y-intercept equal to \[\frac{4}{3}\] and is perpendicular to 3x − 4y + 11 = 0.


The equations of perpendicular bisectors of the sides AB and AC of a triangle ABC are x − y + 5 = 0 and x + 2y = 0 respectively. If the point A is (1, −2), find the equation of the line BC.


The number of real values of λ for which the lines x − 2y + 3 = 0, λx + 3y + 1 = 0 and 4x − λy + 2 = 0 are concurrent is


The equations of the sides AB, BC and CA of ∆ ABC are y − x = 2, x + 2y = 1 and 3x + y + 5 = 0 respectively. The equation of the altitude through B is


A (6, 3), B (−3, 5), C (4, −2) and D (x, 3x) are four points. If ∆ DBC : ∆ ABC = 1 : 2, then x is equal to


Two vertices of a triangle are (−2, −1) and (3, 2) and third vertex lies on the line x + y = 5. If the area of the triangle is 4 square units, then the third vertex is


The centroid of a triangle is (2, 7) and two of its vertices are (4, 8) and (−2, 6). The third vertex is


Find the equation of the line where length of the perpendicular segment from the origin to the line is 4 and the inclination of the perpendicular segment with the positive direction of x-axis is 30°.


A line passes through P(1, 2) such that its intercept between the axes is bisected at P. The equation of the line is ______.


Find the equation of the straight line which passes through the point (1, – 2) and cuts off equal intercepts from axes.


Find the equation of the lines which passes through the point (3, 4) and cuts off intercepts from the coordinate axes such that their sum is 14.


For what values of a and b the intercepts cut off on the coordinate axes by the line ax + by + 8 = 0 are equal in length but opposite in signs to those cut off by the line 2x – 3y + 6 = 0 on the axes.


The line which cuts off equal intercept from the axes and pass through the point (1, –2) is ______.


Locus of the mid-points of the portion of the line x sin θ + y cos θ = p intercepted between the axes is ______.


Reduce the following equation into normal form. Find their perpendicular distances from the origin and angle between perpendicular and the positive x-axis.

y − 2 = 0


Reduce the following equation into normal form. Find their perpendicular distances from the origin and angle between perpendicular and the positive x-axis.

x − y = 4


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×