मराठी

Reduce the following equation into normal form. Find their perpendicular distances from the origin and angle between perpendicular and the positive x-axis. x − y = 4 - Mathematics

Advertisements
Advertisements

प्रश्न

Reduce the following equation into normal form. Find their perpendicular distances from the origin and angle between perpendicular and the positive x-axis.

x − y = 4

बेरीज

उत्तर

The given equation is x – y = 4.

It can be reduced as 1.x + (–1) y = 4

on dividing both sides by `sqrt(1^2 + (-1)^2) = sqrt2`, we obtain `1/sqrt2 "x" + (-1/sqrt2)"y" = 4/sqrt2`

⇒ `"x" cos(2π - π/4) + "y" sin(2π - π/4) = 2sqrt2`

⇒ `"x" cos 315° + "y" sin 315° = 2sqrt2` .........(i)

Eqation (i) is in the normal form.

On comparing equation (i) with the normal form of the equation of line

x cos ω + y sin ω = p, we obtain ω = 315° and p = `2sqrt2`.

Thus, the perpendicular distance of the line from the origin is `2sqrt2` while the angle between the perpendicular and the positive x-axis is 315°.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Straight Lines - Exercise 10.3 [पृष्ठ २२७]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
पाठ 10 Straight Lines
Exercise 10.3 | Q 3. (iii) | पृष्ठ २२७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Two lines passing through the point (2, 3) intersects each other at an angle of 60°. If slope of one line is 2, find equation of the other line.


Find the equation of the right bisector of the line segment joining the points (3, 4) and (–1, 2).


The perpendicular from the origin to the line y = mx + c meets it at the point (–1, 2). Find the values of m and c.


In the triangle ABC with vertices A (2, 3), B (4, –1) and C (1, 2), find the equation and length of altitude from the vertex A.


The hypotenuse of a right angled triangle has its ends at the points (1, 3) and (−4, 1). Find the equation of the legs (perpendicular sides) of the triangle that are parallel to the axes.


Find the equation of a line for  p = 5, α = 60°.


Find the equation of the line on which the length of the perpendicular segment from the origin to the line is 4 and the inclination of the perpendicular segment with the positive direction of x-axis is 30°.


Find the equation of a straight line on which the perpendicular from the origin makes an angle of 30° with x-axis and which forms a triangle of area \[50/\sqrt{3}\] with the axes.


Reduce the equation\[\sqrt{3}\] x + y + 2 = 0 to intercept form and find intercept on the axes.


Reduce the following equation to the normal form and find p and α in \[x + y + \sqrt{2} = 0\].


Reduce the following equation to the normal form and find p and α in \[x - y + 2\sqrt{2} = 0\].


Reduce the following equation to the normal form and find p and α in y − 2 = 0.


Reduce the equation 3x − 2y + 6 = 0 to the intercept form and find the x and y intercepts.


Find the point of intersection of the following pairs of lines:

2x − y + 3 = 0 and x + y − 5 = 0


Find the point of intersection of the following pairs of lines:

bx + ay = ab and ax + by = ab.


Find the coordinates of the vertices of a triangle, the equations of whose sides are

y (t1 + t2) = 2x + 2a t1t2, y (t2 + t3) = 2x + 2a t2t3 and, y (t3 + t1) = 2x + 2a t1t3.


Find the orthocentre of the triangle the equations of whose sides are x + y = 1, 2x + 3y = 6 and 4x − y + 4 = 0.


Prove that the following sets of three lines are concurrent:

3x − 5y − 11 = 0, 5x + 3y − 7 = 0 and x + 2y = 0


If the lines p1 x + q1 y = 1, p2 x + q2 y = 1 and p3 x + q3 y = 1 be concurrent, show that the points (p1, q1), (p2, q2) and (p3, q3) are collinear.


If the three lines ax + a2y + 1 = 0, bx + b2y + 1 = 0 and cx + c2y + 1 = 0 are concurrent, show that at least two of three constants a, b, c are equal.


Find the image of the point (2, 1) with respect to the line mirror x + y − 5 = 0.


Find the coordinates of the foot of the perpendicular from the point (−1, 3) to the line 3x − 4y − 16 = 0.


Find the projection of the point (1, 0) on the line joining the points (−1, 2) and (5, 4).


Find the values of the parameter a so that the point (a, 2) is an interior point of the triangle formed by the lines x + y − 4 = 0, 3x − 7y − 8 = 0 and 4x − y − 31 = 0.


The equations of the sides AB, BC and CA of ∆ ABC are y − x = 2, x + 2y = 1 and 3x + y + 5 = 0 respectively. The equation of the altitude through B is


A (6, 3), B (−3, 5), C (4, −2) and D (x, 3x) are four points. If ∆ DBC : ∆ ABC = 1 : 2, then x is equal to


The figure formed by the lines ax ± by ± c = 0 is


The centroid of a triangle is (2, 7) and two of its vertices are (4, 8) and (−2, 6). The third vertex is


Find the equation of the line where length of the perpendicular segment from the origin to the line is 4 and the inclination of the perpendicular segment with the positive direction of x-axis is 30°.


The inclination of the line x – y + 3 = 0 with the positive direction of x-axis is ______.


A line passes through P(1, 2) such that its intercept between the axes is bisected at P. The equation of the line is ______.


Find the equation of the lines which passes through the point (3, 4) and cuts off intercepts from the coordinate axes such that their sum is 14.


Find the equation of the line which passes through the point (– 4, 3) and the portion of the line intercepted between the axes is divided internally in the ratio 5 : 3 by this point.


Locus of the mid-points of the portion of the line x sin θ + y cos θ = p intercepted between the axes is ______.


Reduce the following equation into slope-intercept form and find their slopes and the y-intercepts.

6x + 3y – 5 = 0


Reduce the following equation into intercept form and find their intercepts on the axes.

 3x + 2y – 12 = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×