मराठी

Show that the Origin is Equidistant from the Lines 4x + 3y + 10 = 0; 5x − 12y + 26 = 0 and 7x + 24y = 50. - Mathematics

Advertisements
Advertisements

प्रश्न

Show that the origin is equidistant from the lines 4x + 3y + 10 = 0; 5x − 12y + 26 = 0 and 7x + 24y = 50.

थोडक्यात उत्तर

उत्तर

Let us write down the normal forms of the given lines.
First line: 4x + 3y + 10 = 0

\[\Rightarrow - 4x - 3y = 10\]

\[ \Rightarrow - \frac{4}{\sqrt{\left( - 4 \right)^2 + \left( - 3 \right)^2}}x - \frac{3}{\sqrt{\left( - 4 \right)^2 + \left( - 3 \right)^2}}y = \frac{10}{\sqrt{\left( - 4 \right)^2 + \left( - 3 \right)^2}} \left[ \text { Dividing both sides by } \sqrt{\left( \text { coefficient of x } \right)^2 + \left( \text { coefficient of y } \right)^2} \right]\]

\[ \Rightarrow - \frac{4}{5}x - \frac{3}{5}y = 2 \]

\[ \therefore p = 2\]

Second line: 5x − 12y + 26 = 0

\[\Rightarrow - 5x + 12y = 26\]

\[ \Rightarrow - \frac{5}{\sqrt{\left( - 5 \right)^2 + {12}^2}}x + \frac{12}{\sqrt{\left( - 5 \right)^2 + {12}^2}}y = \frac{26}{\sqrt{\left( - 5 \right)^2 + {12}^2}} \left[\text {  Dividing both sides by } \sqrt{\left( \text { coefficient of x } \right)^2 + \left( \text { coefficient of y } \right)^2} \right]\]

\[ \Rightarrow - \frac{5}{13}x + \frac{12}{13}y = 2\]

\[ \therefore p = 2\]

Third line: 7x + 24y = 50

\[\Rightarrow \frac{7}{\sqrt{7^2 + {24}^2}}x + \frac{24}{\sqrt{7^2 + {24}^2}}y = \frac{50}{\sqrt{7^2 + {24}^2}} \left[ \text { Dividing both sides by }\sqrt{\left( \text { coefficient of x } \right)^2 + \left( \text { coefficient of y  } \right)^2} \right]\]

\[ \Rightarrow \frac{7}{25}x + \frac{24}{25}y = 2\]

\[ \therefore p = 2\]

Hence, the origin is equidistant from the given lines.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 23: The straight lines - Exercise 23.9 [पृष्ठ ७२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 23 The straight lines
Exercise 23.9 | Q 5 | पृष्ठ ७२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Reduce the following equation into normal form. Find their perpendicular distances from the origin and angle between perpendicular and the positive x-axis.

`x – sqrt3y + 8 = 0`


Find equation of the line perpendicular to the line x – 7y + 5 = 0 and having x intercept 3.


Two lines passing through the point (2, 3) intersects each other at an angle of 60°. If slope of one line is 2, find equation of the other line.


In the triangle ABC with vertices A (2, 3), B (4, –1) and C (1, 2), find the equation and length of altitude from the vertex A.


If p is the length of perpendicular from the origin to the line whose intercepts on the axes are a and b, then show that `1/p^2 = 1/a^2 + 1/b^2`.


If three lines whose equations are y = m1x + c1, y = m2x + c2 and y = m3x + c3 are concurrent, then show that m1(c2 – c3) + m2 (c3 – c1) + m3 (c1 – c2) = 0.


Find the equation of the line passing through the point of intersection of the lines 4x + 7y – 3 = 0 and 2x – 3y + 1 = 0 that has equal intercepts on the axes.


Prove that the product of the lengths of the perpendiculars drawn from the points `(sqrt(a^2 - b^2), 0)` and `(-sqrta^2-b^2, 0)` to the line `x/a cos theta + y/b sin theta = 1` is `b^2`.


Find the equation of a line which is equidistant from the lines x = − 2 and x = 6.


Find the lines through the point (0, 2) making angles \[\frac{\pi}{3} \text { and } \frac{2\pi}{3}\]  with the x-axis. Also, find the lines parallel to them cutting the y-axis at a distance of 2 units below the origin.


Find the equation of the line which intercepts a length 2 on the positive direction of the x-axis and is inclined at an angle of 135° with the positive direction of y-axis.


Find the equation of the bisector of angle A of the triangle whose vertices are A (4, 3), B (0, 0) and C(2, 3).


Find the equation of a line for p = 4, α = 150°.


Find the equation of a straight line on which the perpendicular from the origin makes an angle of 30° with x-axis and which forms a triangle of area \[50/\sqrt{3}\] with the axes.


Reduce the equation \[\sqrt{3}\] x + y + 2 = 0 to the normal form and find p and α.


Reduce the following equation to the normal form and find p and α in \[x + \sqrt{3}y - 4 = 0\] .


Reduce the following equation to the normal form and find p and α in \[x + y + \sqrt{2} = 0\].


Reduce the equation 3x − 2y + 6 = 0 to the intercept form and find the x and y intercepts.


Find the point of intersection of the following pairs of lines:

2x − y + 3 = 0 and x + y − 5 = 0


Find the point of intersection of the following pairs of lines:

\[y = m_1 x + \frac{a}{m_1} \text { and }y = m_2 x + \frac{a}{m_2} .\]


Show that the area of the triangle formed by the lines y = m1 x, y = m2 x and y = c is equal to \[\frac{c^2}{4}\left( \sqrt{33} + \sqrt{11} \right),\] where m1, m2 are the roots of the equation \[x^2 + \left( \sqrt{3} + 2 \right)x + \sqrt{3} - 1 = 0 .\]


Find the orthocentre of the triangle the equations of whose sides are x + y = 1, 2x + 3y = 6 and 4x − y + 4 = 0.


Prove that the following sets of three lines are concurrent:

 15x − 18y + 1 = 0, 12x + 10y − 3 = 0 and 6x + 66y − 11 = 0


Prove that the following sets of three lines are concurrent:

3x − 5y − 11 = 0, 5x + 3y − 7 = 0 and x + 2y = 0


For what value of λ are the three lines 2x − 5y + 3 = 0, 5x − 9y + λ = 0 and x − 2y + 1 = 0 concurrent?


If the three lines ax + a2y + 1 = 0, bx + b2y + 1 = 0 and cx + c2y + 1 = 0 are concurrent, show that at least two of three constants a, b, c are equal.


If a, b, c are in A.P., prove that the straight lines ax + 2y + 1 = 0, bx + 3y + 1 = 0 and cx + 4y + 1 = 0 are concurrent.


Find the equation of the straight line which has y-intercept equal to \[\frac{4}{3}\] and is perpendicular to 3x − 4y + 11 = 0.


Find the coordinates of the foot of the perpendicular from the point (−1, 3) to the line 3x − 4y − 16 = 0.


Write the coordinates of the orthocentre of the triangle formed by the lines x2 − y2 = 0 and x + 6y = 18.


The equations of the sides AB, BC and CA of ∆ ABC are y − x = 2, x + 2y = 1 and 3x + y + 5 = 0 respectively. The equation of the altitude through B is


A (6, 3), B (−3, 5), C (4, −2) and D (x, 3x) are four points. If ∆ DBC : ∆ ABC = 1 : 2, then x is equal to


A point equidistant from the line 4x + 3y + 10 = 0, 5x − 12y + 26 = 0 and 7x+ 24y − 50 = 0 is


A line passes through P(1, 2) such that its intercept between the axes is bisected at P. The equation of the line is ______.


Find the equation of the lines which passes through the point (3, 4) and cuts off intercepts from the coordinate axes such that their sum is 14.


If the line `x/"a" + y/"b"` = 1 passes through the points (2, –3) and (4, –5), then (a, b) is ______.


The line which cuts off equal intercept from the axes and pass through the point (1, –2) is ______.


Reduce the following equation into slope-intercept form and find their slopes and the y-intercepts.

y = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×