मराठी

Find the equation of the line passing through the point of intersection of the lines 4x + 7y – 3 = 0 and 2x – 3y + 1 = 0 that has equal intercepts on the axes. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equation of the line passing through the point of intersection of the lines 4x + 7y – 3 = 0 and 2x – 3y + 1 = 0 that has equal intercepts on the axes.

बेरीज

उत्तर

4x + 7y = 3       ..…(i)

2x – 3y = –1      .....(ii)

On multiplying equation (ii) by 2,

4x – 6y = – 2      ..…(iii)

By subtracting equation (iii) from (i)

13y = 5

∴ y = `5/13`

Putting the value of y in equation (i),

`4"x" + 7 xx 5/13 = 3`

or `4"x" = 3 - 35/13`

= `(39 - 35)/13`

= `4/13`

∴ `"x" = 1/13`

The given lines intersect at the point `(1/3, 5/13)`.

Lines whose intercepts on the axes are equal make an angle of 45° or 135° with the positive x-axis. Therefore its slope will be ±1.

∴ Equations of lines PA and PB

y – y1 = m(x – x1)

(i) When m = 1, then y – `5/13 = 1 ("x" - 1/13)`

or 13y – 5 = 13 x – 1 or 13x – 13y + 4 = 0

(ii) When m = –1, then y – `5/13 = 1 ("x" - 1/3)`

13y – 5 = –13x + 1

∴ 13x + 13y – 6 = 0

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Straight Lines - Miscellaneous Exercise [पृष्ठ २३३]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
पाठ 10 Straight Lines
Miscellaneous Exercise | Q 12 | पृष्ठ २३३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Reduce the following equation into normal form. Find their perpendicular distances from the origin and angle between perpendicular and the positive x-axis.

`x – sqrt3y + 8 = 0`


Prove that the line through the point (x1, y1) and parallel to the line Ax + By + C = 0 is A (x –x1) + B (y – y1) = 0.


Find the equation of the right bisector of the line segment joining the points (3, 4) and (–1, 2).


In the triangle ABC with vertices A (2, 3), B (4, –1) and C (1, 2), find the equation and length of altitude from the vertex A.


Find the equations of the lines, which cut-off intercepts on the axes whose sum and product are 1 and –6, respectively.


If three lines whose equations are y = m1x + c1, y = m2x + c2 and y = m3x + c3 are concurrent, then show that m1(c2 – c3) + m2 (c3 – c1) + m3 (c1 – c2) = 0.


Find equation of the line which is equidistant from parallel lines 9x + 6y – 7 = 0 and 3x + 2y + 6 = 0.


Find the equation of a line that has y-intercept −4 and is parallel to the line joining (2, −5) and (1, 2).


Find the equation of a line for p = 4, α = 150°.


Find the equation of the line on which the length of the perpendicular segment from the origin to the line is 4 and the inclination of the perpendicular segment with the positive direction of x-axis is 30°.


Find the equation of the straight line on which the length of the perpendicular from the origin is 2 and the perpendicular makes an angle α with x-axis such that sin α = \[\frac{1}{3}\].


The length of the perpendicular from the origin to a line is 7 and the line makes an angle of 150° with the positive direction of Y-axis. Find the equation of the line.


Reduce the equation \[\sqrt{3}\] x + y + 2 = 0 to the normal form and find p and α.


Show that the origin is equidistant from the lines 4x + 3y + 10 = 0; 5x − 12y + 26 = 0 and 7x + 24y = 50.


Reduce the equation 3x − 2y + 6 = 0 to the intercept form and find the x and y intercepts.


Find the area of the triangle formed by the line x + y − 6 = 0, x − 3y − 2 = 0 and 5x − 3y + 2 = 0.


Find the equations of the medians of a triangle, the equations of whose sides are:
3x + 2y + 6 = 0, 2x − 5y + 4 = 0 and x − 3y − 6 = 0


Prove that the lines  \[y = \sqrt{3}x + 1, y = 4 \text { and } y = - \sqrt{3}x + 2\] form an equilateral triangle.


Find the equation of the line joining the point (3, 5) to the point of intersection of the lines 4x + y − 1 = 0 and 7x − 3y − 35 = 0.


Prove that the following sets of three lines are concurrent:

3x − 5y − 11 = 0, 5x + 3y − 7 = 0 and x + 2y = 0


Find the conditions that the straight lines y = m1 x + c1, y = m2 x + c2 and y = m3 x + c3 may meet in a point.


Show that the straight lines L1 = (b + c) x + ay + 1 = 0, L2 = (c + a) x + by + 1 = 0 and L3 = (a + b) x + cy + 1 = 0 are concurrent.


If the image of the point (2, 1) with respect to the line mirror be (5, 2), find the equation of the mirror.


Find the projection of the point (1, 0) on the line joining the points (−1, 2) and (5, 4).


The equations of perpendicular bisectors of the sides AB and AC of a triangle ABC are x − y + 5 = 0 and x + 2y = 0 respectively. If the point A is (1, −2), find the equation of the line BC.


Find the values of the parameter a so that the point (a, 2) is an interior point of the triangle formed by the lines x + y − 4 = 0, 3x − 7y − 8 = 0 and 4x − y − 31 = 0.


Write the area of the figure formed by the lines a |x| + b |y| + c = 0.

 

The number of real values of λ for which the lines x − 2y + 3 = 0, λx + 3y + 1 = 0 and 4x − λy + 2 = 0 are concurrent is


The equations of the sides AB, BC and CA of ∆ ABC are y − x = 2, x + 2y = 1 and 3x + y + 5 = 0 respectively. The equation of the altitude through B is


The figure formed by the lines ax ± by ± c = 0 is


The centroid of a triangle is (2, 7) and two of its vertices are (4, 8) and (−2, 6). The third vertex is


Find the equation of the line where length of the perpendicular segment from the origin to the line is 4 and the inclination of the perpendicular segment with the positive direction of x-axis is 30°.


Prove that every straight line has an equation of the form Ax + By + C = 0, where A, B and C are constants.


A line passes through P(1, 2) such that its intercept between the axes is bisected at P. The equation of the line is ______.


For what values of a and b the intercepts cut off on the coordinate axes by the line ax + by + 8 = 0 are equal in length but opposite in signs to those cut off by the line 2x – 3y + 6 = 0 on the axes.


A line cutting off intercept – 3 from the y-axis and the tangent at angle to the x-axis is `3/5`, its equation is ______.


Reduce the following equation into normal form. Find their perpendicular distances from the origin and angle between perpendicular and the positive x-axis.

x − y = 4


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×