मराठी

The line through the points (h, 3) and (4, 1) intersects the line 7x – 9y – 19 = 0. at right angle. Find the value of h. - Mathematics

Advertisements
Advertisements

प्रश्न

The line through the points (h, 3) and (4, 1) intersects the line 7x – 9y – 19 = 0. at right angle. Find the value of h.

बेरीज

उत्तर

Let the slope of line AB passing through points A(h, 3), B(4, 1) be,

`"m"_1 = (1 - 3)/(4 - "h") = 2/("h" - 4)`

equation of second line

7x − 9y − 19 = 0

or y = `7/9"x" - 19/9`

∴ Slope of the second line, m2 = `7/9`

Since, both lines intersect each other at right angles,

∴ m1m2 = –1

= `2/("h" - 4) xx 7/9 = -1`

14 = –9(h – 4) = –9h + 36

∴ 9h = 36 – 14 = 22

h = `22/9`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Straight Lines - Exercise 10.3 [पृष्ठ २२८]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
पाठ 10 Straight Lines
Exercise 10.3 | Q 10 | पृष्ठ २२८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Reduce the following equation into intercept form and find their intercepts on the axes.

3y + 2 = 0


Reduce the following equation into normal form. Find their perpendicular distances from the origin and angle between perpendicular and the positive x-axis.

`x – sqrt3y + 8 = 0`


Find angles between the lines `sqrt3x + y = 1 and x + sqrt3y = 1`.


If p is the length of perpendicular from the origin to the line whose intercepts on the axes are a and b, then show that `1/p^2 = 1/a^2 + 1/b^2`.


Find the equation of a line which is equidistant from the lines x = − 2 and x = 6.


Find the equation of a line making an angle of 150° with the x-axis and cutting off an intercept 2 from y-axis.


Find the equation of a line which makes an angle of tan−1 (3) with the x-axis and cuts off an intercept of 4 units on negative direction of y-axis.


Find the equation of the right bisector of the line segment joining the points A (1, 0) and B (2, 3).


Find the value of θ and p, if the equation x cos θ + y sin θ = p is the normal form of the line \[\sqrt{3}x + y + 2 = 0\].


Find the equation of a straight line on which the perpendicular from the origin makes an angle of 30° with x-axis and which forms a triangle of area \[50/\sqrt{3}\] with the axes.


If the straight line through the point P (3, 4) makes an angle π/6 with the x-axis and meets the line 12x + 5y + 10 = 0 at Q, find the length PQ.


Reduce the equation \[\sqrt{3}\] x + y + 2 = 0 to slope-intercept form and find slope and y-intercept;


Put the equation \[\frac{x}{a} + \frac{y}{b} = 1\] to the slope intercept form and find its slope and y-intercept.


Find the point of intersection of the following pairs of lines:

2x − y + 3 = 0 and x + y − 5 = 0


Find the point of intersection of the following pairs of lines:

bx + ay = ab and ax + by = ab.


Find the point of intersection of the following pairs of lines:

\[y = m_1 x + \frac{a}{m_1} \text { and }y = m_2 x + \frac{a}{m_2} .\]


Find the coordinates of the vertices of a triangle, the equations of whose sides are

y (t1 + t2) = 2x + 2a t1t2, y (t2 + t3) = 2x + 2a t2t3 and, y (t3 + t1) = 2x + 2a t1t3.


Find the area of the triangle formed by the line y = m1 x + c1, y = m2 x + c2 and x = 0.


Find the equation of the line joining the point (3, 5) to the point of intersection of the lines 4x + y − 1 = 0 and 7x − 3y − 35 = 0.


Show that the area of the triangle formed by the lines y = m1 x, y = m2 x and y = c is equal to \[\frac{c^2}{4}\left( \sqrt{33} + \sqrt{11} \right),\] where m1, m2 are the roots of the equation \[x^2 + \left( \sqrt{3} + 2 \right)x + \sqrt{3} - 1 = 0 .\]


Prove that the following sets of three lines are concurrent:

3x − 5y − 11 = 0, 5x + 3y − 7 = 0 and x + 2y = 0


Prove that the following sets of three lines are concurrent:

\[\frac{x}{a} + \frac{y}{b} = 1, \frac{x}{b} + \frac{y}{a} = 1\text {  and } y = x .\]


Find the conditions that the straight lines y = m1 x + c1, y = m2 x + c2 and y = m3 x + c3 may meet in a point.


If the three lines ax + a2y + 1 = 0, bx + b2y + 1 = 0 and cx + c2y + 1 = 0 are concurrent, show that at least two of three constants a, b, c are equal.


Find the equation of the straight line perpendicular to 2x − 3y = 5 and cutting off an intercept 1 on the positive direction of the x-axis.


Find the image of the point (2, 1) with respect to the line mirror x + y − 5 = 0.


Write the coordinates of the orthocentre of the triangle formed by the lines x2 − y2 = 0 and x + 6y = 18.


Write the area of the figure formed by the lines a |x| + b |y| + c = 0.

 

The number of real values of λ for which the lines x − 2y + 3 = 0, λx + 3y + 1 = 0 and 4x − λy + 2 = 0 are concurrent is


Find the equation of a line which passes through the point (2, 3) and makes an angle of 30° with the positive direction of x-axis.


Find the equation of the line where length of the perpendicular segment from the origin to the line is 4 and the inclination of the perpendicular segment with the positive direction of x-axis is 30°.


Find the equation of the lines which passes through the point (3, 4) and cuts off intercepts from the coordinate axes such that their sum is 14.


Find the equation of the line which passes through the point (– 4, 3) and the portion of the line intercepted between the axes is divided internally in the ratio 5 : 3 by this point.


If the coordinates of the middle point of the portion of a line intercepted between the coordinate axes is (3, 2), then the equation of the line will be ______.


Locus of the mid-points of the portion of the line x sin θ + y cos θ = p intercepted between the axes is ______.


Reduce the following equation into slope-intercept form and find their slopes and the y-intercepts.

y = 0


Reduce the following equation into intercept form and find their intercepts on the axes.

 3x + 2y – 12 = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×