Advertisements
Advertisements
प्रश्न
Find the equation of the straight line perpendicular to 2x − 3y = 5 and cutting off an intercept 1 on the positive direction of the x-axis.
उत्तर
The line perpendicular to 2x − 3y = 5 is \[3x + 2y + \lambda = 0\]
It is given that the line \[3x + 2y + \lambda = 0\] cuts off an intercept of 1 on the positive direction of the x-axis.
This means that the line \[3x + 2y + \lambda = 0\] passes through the point (1, 0).
\[\therefore 3 + 0 + \lambda = 0\]
\[ \Rightarrow \lambda = - 3\]
Substituting the value of \[\lambda\],we get
\[3x + 2y - 3 = 0\] which is equation of the required line.
APPEARS IN
संबंधित प्रश्न
Find angles between the lines `sqrt3x + y = 1 and x + sqrt3y = 1`.
Two lines passing through the point (2, 3) intersects each other at an angle of 60°. If slope of one line is 2, find equation of the other line.
Find the equation of the right bisector of the line segment joining the points (3, 4) and (–1, 2).
If three lines whose equations are y = m1x + c1, y = m2x + c2 and y = m3x + c3 are concurrent, then show that m1(c2 – c3) + m2 (c3 – c1) + m3 (c1 – c2) = 0.
Find equation of the line which is equidistant from parallel lines 9x + 6y – 7 = 0 and 3x + 2y + 6 = 0.
Find the equation of a line making an angle of 150° with the x-axis and cutting off an intercept 2 from y-axis.
Find the equation of the right bisector of the line segment joining the points A (1, 0) and B (2, 3).
Find the equation of the straight line on which the length of the perpendicular from the origin is 2 and the perpendicular makes an angle α with x-axis such that sin α = \[\frac{1}{3}\].
Find the equation of the straight line upon which the length of the perpendicular from the origin is 2 and the slope of this perpendicular is \[\frac{5}{12}\].
Find the equation of the straight line which makes a triangle of area \[96\sqrt{3}\] with the axes and perpendicular from the origin to it makes an angle of 30° with Y-axis.
Find the equation of a straight line on which the perpendicular from the origin makes an angle of 30° with x-axis and which forms a triangle of area \[50/\sqrt{3}\] with the axes.
If the straight line through the point P (3, 4) makes an angle π/6 with the x-axis and meets the line 12x + 5y + 10 = 0 at Q, find the length PQ.
Reduce the equation \[\sqrt{3}\] x + y + 2 = 0 to slope-intercept form and find slope and y-intercept;
Reduce the equation\[\sqrt{3}\] x + y + 2 = 0 to intercept form and find intercept on the axes.
Reduce the equation \[\sqrt{3}\] x + y + 2 = 0 to the normal form and find p and α.
Reduce the following equation to the normal form and find p and α in x − 3 = 0.
Put the equation \[\frac{x}{a} + \frac{y}{b} = 1\] to the slope intercept form and find its slope and y-intercept.
Reduce the equation 3x − 2y + 6 = 0 to the intercept form and find the x and y intercepts.
Find the area of the triangle formed by the line x + y − 6 = 0, x − 3y − 2 = 0 and 5x − 3y + 2 = 0.
Prove that the lines \[y = \sqrt{3}x + 1, y = 4 \text { and } y = - \sqrt{3}x + 2\] form an equilateral triangle.
Find the conditions that the straight lines y = m1 x + c1, y = m2 x + c2 and y = m3 x + c3 may meet in a point.
If the lines p1 x + q1 y = 1, p2 x + q2 y = 1 and p3 x + q3 y = 1 be concurrent, show that the points (p1, q1), (p2, q2) and (p3, q3) are collinear.
If the three lines ax + a2y + 1 = 0, bx + b2y + 1 = 0 and cx + c2y + 1 = 0 are concurrent, show that at least two of three constants a, b, c are equal.
Find the equation of a line which is perpendicular to the line \[\sqrt{3}x - y + 5 = 0\] and which cuts off an intercept of 4 units with the negative direction of y-axis.
Find the projection of the point (1, 0) on the line joining the points (−1, 2) and (5, 4).
If a ≠ b ≠ c, write the condition for which the equations (b − c) x + (c − a) y + (a − b) = 0 and (b3 − c3) x + (c3 − a3) y + (a3 − b3) = 0 represent the same line.
A line passes through P(1, 2) such that its intercept between the axes is bisected at P. The equation of the line is ______.
If the intercept of a line between the coordinate axes is divided by the point (–5, 4) in the ratio 1 : 2, then find the equation of the line.
Find the equation of the line which passes through the point (– 4, 3) and the portion of the line intercepted between the axes is divided internally in the ratio 5 : 3 by this point.
A line cutting off intercept – 3 from the y-axis and the tangent at angle to the x-axis is `3/5`, its equation is ______.
If the coordinates of the middle point of the portion of a line intercepted between the coordinate axes is (3, 2), then the equation of the line will be ______.
Locus of the mid-points of the portion of the line x sin θ + y cos θ = p intercepted between the axes is ______.
Reduce the following equation into slope-intercept form and find their slopes and the y-intercepts.
y = 0
Reduce the following equation into intercept form and find their intercepts on the axes.
4x – 3y = 6
Reduce the following equation into normal form. Find their perpendicular distances from the origin and angle between perpendicular and the positive x-axis.
y − 2 = 0
Reduce the following equation into normal form. Find their perpendicular distances from the origin and angle between perpendicular and the positive x-axis.
x − y = 4