English

Find the Equation of a Line Which Makes an Angle of Tan−1 (3) with the X-axis and Cuts off an Intercept of 4 Units on Negative Direction of Y-axis. - Mathematics

Advertisements
Advertisements

Question

Find the equation of a line which makes an angle of tan−1 (3) with the x-axis and cuts off an intercept of 4 units on negative direction of y-axis.

Answer in Brief

Solution

Let m be the slope of the required line.

\[\therefore m = \tan\theta = \tan\left\{ \tan^{- 1} \left( 3 \right) \right\} = 3\]

\[ c = y - \text { intercept } = - 4\]

Substituting the values of m and c in y = mx + c, we get y = 3x -4

Hence, the equation of the required line is y = 3x - 4

shaalaa.com
  Is there an error in this question or solution?
Chapter 23: The straight lines - Exercise 23.3 [Page 21]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 23 The straight lines
Exercise 23.3 | Q 4 | Page 21

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Reduce the following equation into intercept form and find their intercepts on the axes.

3y + 2 = 0


Find equation of the line parallel to the line 3x – 4y + 2 = 0 and passing through the point (–2, 3).


Prove that the line through the point (x1, y1) and parallel to the line Ax + By + C = 0 is A (x –x1) + B (y – y1) = 0.


If p is the length of perpendicular from the origin to the line whose intercepts on the axes are a and b, then show that `1/p^2 = 1/a^2 + 1/b^2`.


Find the equation of the line passing through the point of intersection of the lines 4x + 7y – 3 = 0 and 2x – 3y + 1 = 0 that has equal intercepts on the axes.


In what ratio, the line joining (–1, 1) and (5, 7) is divided by the line x + y = 4?


Find the equation of a line which is equidistant from the lines x = − 2 and x = 6.


Find the equation of a line that has y-intercept −4 and is parallel to the line joining (2, −5) and (1, 2).


Find the equation of the side BC of the triangle ABC whose vertices are (−1, −2), (0, 1) and (2, 0) respectively. Also, find the equation of the median through (−1, −2).


Find the equation of the bisector of angle A of the triangle whose vertices are A (4, 3), B (0, 0) and C(2, 3).


For what values of a and b the intercepts cut off on the coordinate axes by the line ax + by + 8 = 0 are equal in length but opposite in signs to those cut off by the line 2x − 3y + 6 = 0 on the axes. 


Find the equation of the straight line which makes a triangle of area \[96\sqrt{3}\] with the axes and perpendicular from the origin to it makes an angle of 30° with Y-axis.


Reduce the equation\[\sqrt{3}\] x + y + 2 = 0 to intercept form and find intercept on the axes.


Reduce the following equation to the normal form and find p and α in y − 2 = 0.


Show that the origin is equidistant from the lines 4x + 3y + 10 = 0; 5x − 12y + 26 = 0 and 7x + 24y = 50.


Find the values of θ and p, if the equation x cos θ + y sin θ = p is the normal form of the line \[\sqrt{3}x + y + 2 = 0\].


Find the point of intersection of the following pairs of lines:

2x − y + 3 = 0 and x + y − 5 = 0


Find the area of the triangle formed by the line y = 0, x = 2 and x + 2y = 3.


Prove that the following sets of three lines are concurrent:

 15x − 18y + 1 = 0, 12x + 10y − 3 = 0 and 6x + 66y − 11 = 0


Prove that the following sets of three lines are concurrent:

\[\frac{x}{a} + \frac{y}{b} = 1, \frac{x}{b} + \frac{y}{a} = 1\text {  and } y = x .\]


Show that the straight lines L1 = (b + c) x + ay + 1 = 0, L2 = (c + a) x + by + 1 = 0 and L3 = (a + b) x + cy + 1 = 0 are concurrent.


Find the equation of the perpendicular bisector of the line joining the points (1, 3) and (3, 1).


Find the image of the point (2, 1) with respect to the line mirror x + y − 5 = 0.


If the image of the point (2, 1) with respect to the line mirror be (5, 2), find the equation of the mirror.


Find the coordinates of the foot of the perpendicular from the point (−1, 3) to the line 3x − 4y − 16 = 0.


Find the values of α so that the point P (α2, α) lies inside or on the triangle formed by the lines x − 5y+ 6 = 0, x − 3y + 2 = 0 and x − 2y − 3 = 0.


Determine whether the point (−3, 2) lies inside or outside the triangle whose sides are given by the equations x + y − 4 = 0, 3x − 7y + 8 = 0, 4x − y − 31 = 0 .


Write the coordinates of the orthocentre of the triangle formed by the lines x2 − y2 = 0 and x + 6y = 18.


Write the area of the figure formed by the lines a |x| + b |y| + c = 0.

 

The number of real values of λ for which the lines x − 2y + 3 = 0, λx + 3y + 1 = 0 and 4x − λy + 2 = 0 are concurrent is


A (6, 3), B (−3, 5), C (4, −2) and D (x, 3x) are four points. If ∆ DBC : ∆ ABC = 1 : 2, then x is equal to


The figure formed by the lines ax ± by ± c = 0 is


Find the equation of a line which passes through the point (2, 3) and makes an angle of 30° with the positive direction of x-axis.


Prove that every straight line has an equation of the form Ax + By + C = 0, where A, B and C are constants.


A line passes through P(1, 2) such that its intercept between the axes is bisected at P. The equation of the line is ______.


If the intercept of a line between the coordinate axes is divided by the point (–5, 4) in the ratio 1 : 2, then find the equation of the line.


Reduce the following equation into slope-intercept form and find their slopes and the y-intercepts.

6x + 3y – 5 = 0


Reduce the following equation into intercept form and find their intercepts on the axes.

4x – 3y = 6


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×