English

Find the Values of θ and P, If the Equation X Cos θ + Y Sin θ = P is the Normal Form of the Line √ 3 X + Y + 2 = 0 . - Mathematics

Advertisements
Advertisements

Question

Find the values of θ and p, if the equation x cos θ + y sin θ = p is the normal form of the line \[\sqrt{3}x + y + 2 = 0\].

Answer in Brief

Solution

The normal form of the line \[\sqrt{3}x + y + 2 = 0\] is

\[- \sqrt{3}x - y = 2\]

\[ \Rightarrow \frac{- \sqrt{3}}{\sqrt{\left( - \sqrt{3} \right)^2 + \left( - 1 \right)^2}}x - \frac{1}{\sqrt{\left( - \sqrt{3} \right)^2 + \left( - 1 \right)^2}}y = \frac{2}{\sqrt{\left( - \sqrt{3} \right)^2 + \left( - 1 \right)^2}} \left[ \text { Dividing both sides by } \sqrt{\left( \text { coefficient of x } \right)^2 + \left( \text { coefficient of y } \right)^2} \right]\]

\[ \Rightarrow \frac{- \sqrt{3}}{2}x - \frac{1}{2}y = 1\]

Comparing the equations x cos θ + y sin θ = p  and \[\frac{- \sqrt{3}}{2}x - \frac{1}{2}y = 1\] we get, 

\[\cos\theta = - \frac{\sqrt{3}}{2}, \sin\theta = - \frac{1}{2} \text { and }p = 1\]

∴ \[\theta = {210}^\circ \text { and }p = 1\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 23: The straight lines - Exercise 23.9 [Page 72]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 23 The straight lines
Exercise 23.9 | Q 6 | Page 72

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Reduce the following equation into normal form. Find their perpendicular distances from the origin and angle between perpendicular and the positive x-axis.

`x – sqrt3y + 8 = 0`


Find equation of the line parallel to the line 3x – 4y + 2 = 0 and passing through the point (–2, 3).


Find angles between the lines `sqrt3x + y = 1 and x + sqrt3y = 1`.


The line through the points (h, 3) and (4, 1) intersects the line 7x – 9y – 19 = 0. at right angle. Find the value of h.


Prove that the line through the point (x1, y1) and parallel to the line Ax + By + C = 0 is A (x –x1) + B (y – y1) = 0.


Find the equations of the lines, which cut-off intercepts on the axes whose sum and product are 1 and –6, respectively.


Find equation of the line which is equidistant from parallel lines 9x + 6y – 7 = 0 and 3x + 2y + 6 = 0.


Prove that the product of the lengths of the perpendiculars drawn from the points `(sqrt(a^2 - b^2), 0)` and `(-sqrta^2-b^2, 0)` to the line `x/a cos theta + y/b sin theta = 1` is `b^2`.


Find the equation of a line which makes an angle of tan−1 (3) with the x-axis and cuts off an intercept of 4 units on negative direction of y-axis.


Find the equation of the side BC of the triangle ABC whose vertices are (−1, −2), (0, 1) and (2, 0) respectively. Also, find the equation of the median through (−1, −2).


Find the equation of the bisector of angle A of the triangle whose vertices are A (4, 3), B (0, 0) and C(2, 3).


The length of the perpendicular from the origin to a line is 7 and the line makes an angle of 150° with the positive direction of Y-axis. Find the equation of the line.


Find the equation of the straight line which makes a triangle of area \[96\sqrt{3}\] with the axes and perpendicular from the origin to it makes an angle of 30° with Y-axis.


Find the equation of a straight line on which the perpendicular from the origin makes an angle of 30° with x-axis and which forms a triangle of area \[50/\sqrt{3}\] with the axes.


Reduce the following equation to the normal form and find p and α in x − 3 = 0.


Reduce the following equation to the normal form and find p and α in y − 2 = 0.


Put the equation \[\frac{x}{a} + \frac{y}{b} = 1\] to the slope intercept form and find its slope and y-intercept.


Reduce the lines 3 x − 4 y + 4 = 0 and 2 x + 4 y − 5 = 0 to the normal form and hence find which line is nearer to the origin.


Show that the origin is equidistant from the lines 4x + 3y + 10 = 0; 5x − 12y + 26 = 0 and 7x + 24y = 50.


Find the point of intersection of the following pairs of lines:

bx + ay = ab and ax + by = ab.


Find the coordinates of the incentre and centroid of the triangle whose sides have the equations 3x− 4y = 0, 12y + 5x = 0 and y − 15 = 0.


Prove that the following sets of three lines are concurrent:

3x − 5y − 11 = 0, 5x + 3y − 7 = 0 and x + 2y = 0


Find the conditions that the straight lines y = m1 x + c1, y = m2 x + c2 and y = m3 x + c3 may meet in a point.


If the three lines ax + a2y + 1 = 0, bx + b2y + 1 = 0 and cx + c2y + 1 = 0 are concurrent, show that at least two of three constants a, b, c are equal.


Find the values of the parameter a so that the point (a, 2) is an interior point of the triangle formed by the lines x + y − 4 = 0, 3x − 7y − 8 = 0 and 4x − y − 31 = 0.


Determine whether the point (−3, 2) lies inside or outside the triangle whose sides are given by the equations x + y − 4 = 0, 3x − 7y + 8 = 0, 4x − y − 31 = 0 .


Write the coordinates of the orthocentre of the triangle formed by the lines xy = 0 and x + y = 1.


If a ≠ b ≠ c, write the condition for which the equations (b − c) x + (c − a) y + (a − b) = 0 and (b3 − c3) x + (c3 − a3) y + (a3 − b3) = 0 represent the same line.


Write the area of the figure formed by the lines a |x| + b |y| + c = 0.

 

The equations of the sides AB, BC and CA of ∆ ABC are y − x = 2, x + 2y = 1 and 3x + y + 5 = 0 respectively. The equation of the altitude through B is


Two vertices of a triangle are (−2, −1) and (3, 2) and third vertex lies on the line x + y = 5. If the area of the triangle is 4 square units, then the third vertex is


For what values of a and b the intercepts cut off on the coordinate axes by the line ax + by + 8 = 0 are equal in length but opposite in signs to those cut off by the line 2x – 3y + 6 = 0 on the axes.


Find the equation of the line which passes through the point (– 4, 3) and the portion of the line intercepted between the axes is divided internally in the ratio 5 : 3 by this point.


A line cutting off intercept – 3 from the y-axis and the tangent at angle to the x-axis is `3/5`, its equation is ______.


Reduce the following equation into intercept form and find their intercepts on the axes.

 3x + 2y – 12 = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×